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Abstract —This paper develops an ANFIS based torque control of SRM to reduce the torque 

ripple. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the 

learning capability of neural networks. This controller realizes a good dynamic behavior of the 

motor, a perfect speed tracking with no overshoot and a good rejection of impact loads 

disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better 

performance and high robustness than those obtained by the application of a conventional 

controller (PI). The above controller was realized using MATLAB/Simulink. 
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I. INTRODUCTION 

With concerns over energy efficient drive, 

Switched Reluctance Motor (SRM) has 

attracted the interest in fields of Electric 

Vehicle (EV) due to its robust construction, 

fault tolerant operation, high starting torque 

without the problem of excessive inrush 

current, and high-speed operation. However, 

SRM suffers from some drawbacks such as 

high torque ripple and acoustic noise which 

are very critical for EV applications. The 

research is progressing extensively for the 

mitigation of torque ripple and acoustic 

noise. In indirect torque control scheme of 

SRM, the torque of the motor is controlled 

by controlling the motor current. Due to 

high nonlinearity in torque and current 

relationship, the conversion of torque into 

equivalent current value is cumbersome. In 

the paper [1], the torque is directly 

proportional to the ideal phase inductance 

profile which increases or decreases 

proportionately with the angle of overlap. 

Due to magnetic saturation, the phase 

inductance varies with the motor current 

which leads to large amount of error in both 

instantaneous and average value of torque. 

In [2], the author had suggested a 

multiplication factor F to compensate for the 

error of torque and ‗F‘ should be a function 

of current level. In [3], the author have 

suggested approximating the torque as 

proportional to the square of stator current, 

where the multiplying factor is assumed to 

vary as a sinusoidal function of rotor 

position alone. A two dimensional lookup 

table in which the torque value is stored as 

function of current and rotor position. The 

amount of time taken for computation of 

torque is very high [4, 5]. In [6], a 

Cerebellar Model Articulation Controller 

(CMAC) based torque control was 

presented. A closed loop torque controller 

based on B-spline neural network (BSNN) 

with online training was presented in [7]. 

Back-propagation (BP) based neural 

network controllers have been proposed in 
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[8]-[10], but both of [8] and [9] used one-

hidden-layer neural network which is not 

sufficient for estimating the stabilized motor 

current. In [11, 12], look-up tables were 

generated off-line by building an SRM 

model to profile the current for the flat 

torque waveform and stored in the 

controller. During on-line running, the 

controller searched the look-up tables for the 

current command. 

 

Another comprehensive controller to 

maximize efficiency and peak overload 

capability of SRM by using look-up tables 

for electric vehicle drives has been designed. 

This controller has several  look-up tables 

for different voltages. To calculate the 

control parameters for a certain torque - 

command/rotor-speed (operating point) and 

bus voltage, three interpolations have to be 

performed. The percentage error depends 

upon the resolution of lookup tables. At low 

speed, the torque ripple is sensitive to the 

current profile, and a slight deviation from 

the required profile may produce high torque 

ripple. In this paper, ANFIS based Direct 

Control of torque is proposed to minimize 

the torque ripple at low speed for its simple, 

easy to implement and fast dynamics. 

Computed results show that the proposed 

scheme can reduce the torque ripple and 

provide good dynamic performance with 

respect to changes in the torque commands. 

 

Fig.1 shows a typical control 

diagram for SRM driven by asymmetric half 

bridges. Current controller is employed to 

generate switching signals for the 

asymmetric half bridges according to the 

current reference. The current reference is 

either given by a speed controller or a torque 

distributer. If the current reference comes 

directly from a speed controller, flat top 

chopping current for each phase is 

employed. Due to the strong nonlinearity, in 

some cases, the flat top chopping current 

regulation might not provide satisfactory 

performance. Therefore, torque sharing 

control is used to distribute torque 

production between two phases in order to 

produce constant torque [2]–[7]. 

 
Fig..1. Typical SRM control diagram 

Both flat top chopping current 

regulation and torque sharing control rely on 

accurate current controllers. Hysteresis 

control is one of the most popular current 

control schemes in SRMs, due to its fast 

dynamic response and model independency 

[4]–[8]. However, hysteresis controller also 

suffers from drawbacks including variable 

switching frequency and very high sampling 

rate [9]–[11]. Variable switching frequency 

in hysteresis control makes it difficult to 

design the electromagnetic 

interference(EMI) filter and may cause an 

acoustical noise. High-speed ADCs have 

higher sampling rate, however, they add 

additional cost to the SRM drive system. 

In order to avoid the drawbacks of 

the hysteresis current controller, fixed 

frequency PWM controllers have been 
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studied[9], [11]–[16]. In [12], an open loop 

PWM controller is used, whereas in [9], a 

proportional-integral (PI) current controller 

has been investigated and a current sampling 

method for digital control have been 

introduced. A proportional (P) controller 

with an iterative learning control is proposed 

in [17] to achieve accurate current control. 

In [11], [13]–[16], back EMF compensation 

to the PI current controller has been 

analyzed. In [11],the gains of the PI 

controller are adjusted according to current 

and rotor position. However, a PI controller 

suffers from either slow response or possible 

overshot. It is also difficult to tune the PI 

controller in SRM applications due to the 

highly nonlinear characteristics of the 

machine. 

Model-based dead-beat flux 

controller are proposed in [18]–[21]. The 

dead-beat controller achieves constant 

switching frequency and lower sampling 

rate, while maintaining the similar dynamic 

response as hysteresis controller. However, 

the performance of a dead-beat controller 

relies on an accurate model and a large gain, 

which may degrade the performance of the 

dead-beat controller. 

In [22], a Lyapunov function-based 

controller is proposed to solve model 

mismatch issue. The tracking error is 

bounded by the parameters of the controller. 

A sliding mode current controller is 

proposed in [23]. Parameters of these 

controllers are carefully selected according 

to the model mismatch. These control 

methods need to store several look-up 

tables, which increase the storage and 

computational burden of the digital 

controller. 

A digital PWM current controller for 

the SRM drives is proposed in this paper in 

order to achieve fast response, accurate 

tracking, immunity to noise, model 

mismatch, and stability. The proposed 

controller takes full advantage of the model 

information. Smaller feedback gain could be 

chosen in order to reduce noise sensibility 

without degrading the performance. 

Parameter adaption is adopted to deal with 

the model mismatch. Relationships between 

the proposed controller and the previous 

mentioned PI dead-beat controllers are 

discussed. Both the simulation and 

experimental results are provided to verify 

the performance of the proposed current 

controller. 

 

(II) MODEL OF SRM 

By neglecting mutual coupling between 

phases, the phase voltage equation of an 

SRM can be given as 

  
  (1) 

Where uw is the phase voltage applied on 

the phase winding ,Rwis the winding 

resistance, ψ is the flux linkage, θ is the 

rotor position, and i is the phase current. 

Due to its double salient structure and 

saturation, ψ is a nonlinear function of both i 
and θ. Fig. 2 shows the measured flux 
linkage profile of the SRM studied in this 

paper. The rotor spins360◦ per electric 
period. The aligned positions are 0◦ and 

360◦.The unaligned position is 180◦. Fig. 2 
could be stored into a lookup table when 

digital control is applied. 

Considering the modeling errors, the real 

flux linkage is represented as 
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 (2) 

where is the modeled flux linkage profile 

used in the controller, and factor α is a 
positive number that donates the relationship 

between the modeled flux linkage profile 

and the real one. 

In the ideal case, the modeled flux linkage 

profile exactly matches the real one, and α = 
1. But in practice, no matter whether ψm is 
obtained by the experimental measurement 

or by an FEA calculation, there may be 

some mismatch between ψ and ψm. In this 
case, ψm is unknown and α may be variable 
and there is 

  
  (3) 

where𝛼̅ is the average value of α, Bα ≥ 0 is 
the variation bound of α, and Bα ˙ ≥ 0 is the 
maximum variation rate of α.The values of 
Bα and Bα ˙ depend on the modeling errors 
of thestudied motor. 

Considering the resistances and voltage 

drops on windings and switches, the phase 

voltage equation could be written as 

   (4) 

where uc donates the converter output 

voltage, Rc donates the equivalent resistance 

of the converter, Rc could be obtained from 

either experiments or data sheets, but it 

changes according to current, temperature, 

gate source (GS) voltage, etc. vc donates the 

voltage drop on the converter, vm donates 

the voltage drop caused by mutual 

inductance, vn reflects all other voltage 

drops, and noises in the system. Equation (4) 

could be formulated as 

 
  (5) 

where R is the total equivalent resistance 

and v is the total equivalent voltage drop. 

They are uncertain parameters that are not 

easy to model. The values of R and v are 

both unknown and may be variable, which 

are represented as 

  
  (6) 

where𝑅̅ donates the average value of R, BR 

≥ 0 donates thevariation bound of R, and 

Bv˙ ≥ 0 donates the maximum variation rate 
of R. R is also positive. 𝑣̅ donates the 

average value ofv, Bv˙ ≥ 0 donates the 
variation bound of v, and Bv˙ ≥ 0 donatesthe 
maximum variation rate of v. 

(III) Proposed Current Controller 

A current controller can either control the 

current directly or control the current 

indirectly by controlling the flux linkage. 

For a certain position θ, ψ is a monotone 
increasing function of i. For any i1 ≥ 0, i2 ≥ 
0 there is 

  
  (7) 

Therefore, the phase current can be 

controlled by controlling its corresponding 

flux linkage. The SRM model shown in (4) 

contains unknown parameters, a current 
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controller with estimated parameter values 

could be constructed as 

 
  (8) 

where ψm(θ,iref) is the reference flux 
linkage calculated by the reference current 

iref and rotor position θ, 𝛼̂  is the 

estimatedvalue of α, 𝑅̂ is the estimated value 

of R, 𝑣  is the estimatedvalue of v, k is a 

positive constant, and e is the flux linkage 

errorwhich can be expressed as 

 
  (9) 

Substituting (8) into (5), the flux linkage 

error dynamics canbe derived as 

 
  (10) 

where 𝛼̃, 𝑅̃and 𝑣̃ are the estimation errors, ei 

is the currenterror. 

If a Lyapunov candidate is selected as 

 
  (11) 

where kα, kR , and kv are positive constants. 
Then, the derivative of the Lyapunov 

candidate is 

  
  (12) 

 
Fig. 2.2. Typical waveform of ψm (θ, iref ) 

and iref 

It can be seen from (12) that if 𝛼̇̂ ,𝑅̇̂, and 𝑣̇are chosen as 

  
 (13) 

Then, (12) becomes 

  (14) 

(A) Constant Parameters 

k, 𝑅̂, and α are positive constants, and 

according to (7), eiand e have the same sign. 

If α, R, v are constant, i.e., 

   
 (15) 𝑉̇becomes 

 
Therefore˙ is semi negative definite. This 
indicates that the system is globally 

asymptotically stable, and e is going to 

converge to zero. If e converges to zero, the 

system is internally stable. The convergence 

rate of e is determined by k and α. Since αis 
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around 1, k could be selected to adjust the 

convergence rate. According to (16), a larger 

k gives a faster convergence rate, which 

means faster dynamic response. However, 

according to(8), k is the feedback gain of the 

error, in this case, a large gain means that 

the controller is more sensitive to noise. 

Therefore, the selection of k is a tradeoff 

between the dynamic response and 

robustness. According to (10), if e converges 

to zero, forany ψ ˙m(θ,iref) and i, there will 
be 

 
  (17) 

As is known, the adaptive controllers suffer 

from parameter drafting. Since all the 

estimated parameters are bounded, the 

controller will be stable. However, 

parameters will not necessarily converge to 

their real values unless persistent excitation 

condition is satisfied [24]. For the case of 

(13), ψ ˙m (θ,iref) andi need to be “rich” 

enough to guarantee the convergence. Fig. 

3shows a typical waveform of ψm (θ,iref) 
and iref with flat-top current control. It can 

be seen that iref is a constant number 

andi˙ref is zero, while ψm (θ,iref) is a 
nonlinear function of time. 

The nonlinearity of ψm (θ,iref) will provide 
sufficient frequencies to make ψ ˙m (θ,iref) 
“rich.” This is another reason why flux 

linkage is selected to be controlled instead 

of current. In this case, there is 

  
 (18) 

where t0 is the beginning of each stroke and 

te is the end of the stroke. Equation (18) 

indicates that Ψ (t) satisfies the exciting 

condition, which means ||[𝛼̃𝑣̃]||2 is going to 

converge perstoke [24]. In this case, as the 

controller is active each stroke,the 

estimation errors are going to converge to 

zero eventuallyand there will be 

    
 (19) 

However, if the flat-top current control is 

applied, i may not be rich enough to 

guarantee the convergence of 𝑅̂. In this case, 

adead zone should be added to prevent 

parameter drafting of 𝑅̂. 

(B) Variable Parameters 

Practically, the parameters α, R, and v are 
not constant 

   
 (20) 

Since α, R, and v have their own bounds, the 
adaption law in(13) should be modified by 

   (21) 

This modification does not affect the system 

stability if the real values of α, R, and v do 
not exceed their bounds. At the same time, 

(22) defines the bounds of parameter 

estimation error 

   (22) 

Combined with (3) and (6), there are 
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 (23) 

 (24) 

where B𝛼̇ , B𝑅̇ , and B𝑣̇ are the bounds of 𝛼̇ 

, 𝑅̇, and 𝑣̇, respectively. According to (14) 

and (11), there is 

 
 (25) 

Where ki> 0 donates the relationship 

between e and ei. According to (25), if V 

exceeds αN/2(k + ki𝑅̂) + M, 𝑉̇ will 

benegative, and V is going to decrease. 

Thus, the control error isbounded by 

 
 (26) 

As shown from (26), for the predefined 

bounds and maximum variation rates of the 

unknown parameter, the control error is 

limited by k ,kα, kR , and kv. 
(C) Digital Implementation of Proposed 

Current Controller 

In digital implementation, the discrete form 

of (8) and (21)can be reformulated as 

  (27) 

 
Fig. 3. PWM modulation 

Where T is the digital sampling time, θ(k + 

1) = θ(k) + ωT, and ω is the electric angular 

speed of the SRM 

  (28) 

Where Δψm(k) is defined in (27). BDZ is 
the error dead zone,𝛼̅, 𝑅̅, and 𝑣̅ are the 

estimated average values of α, R, and 
v,respectively. 

(IV)PWM Delay Compensation 

Fig..3 shows the PWM modulation for 

digital control. The duty ratio is either 

obtained by uc/UDC for soft chopping or0.5 

+ 0.5(uc/UDC ) for hard chopping. UDC is 

the dc bus voltage. In the kth control period, 

current should be sampled att(k). But in 

practice, especially in a DSP control, if 
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current is sampled at t(k), it will take some 

time for the controller to calculate the duty 

ratio and the duty ratio for t(k) is actually 

loaded into the PWM modulator at t(k + 1). 

This brings one sampling time delay into the 

control loop. In this case, the duty ratio for 

t(k) should be calculated before t(k). 

Mohamed and El-Saadany [10] proposes a 

predictive current controller to solve 

 
Fig. 4. Approximation of i(k), θ(k), and θ(k 
+ 1) 

the problem. However, the predictive 

current controller needs accurate model and 

increases the calculation burden for DSP, 

especially for nonlinear systems such as 

SRMs. Blaabjerg et al.[9] recommends that 

current should be sampled at t(k − 
1/2),which means i(k) is approximated by 

   
 (29) 

As shown in Fig. 3, there is no switching 

action at t(k − 1/2),EMI noise at that 

instance can be avoided. Furthermore, the 

duty ratio can be calculated within half of 

the period and delay in the control loop is 

avoided. 

The estimation of (29) is accurate if the 

average current of each kth period stays the 

same, as the (k − 1)th period shown in Fig. 
3. If average current between each period 

changes, as the kth period shown in Fig.4, 

(29) is not accurate. 

As shown in Fig. 3, with the symmetrical 

modulation, the voltage waveforms of the 

former half period and the latter halfperiod 

are symmetric. Therefore, the flux could be 

estimated instead of current. The flux ψm 
(θ(k),i(k)) could be approximated by 

 
 (30) 

In (30), current is sampled at both t(k - 1/2) 

and t(k - 1),which doubles the sampling rate. 

The ADCs used in motor control is capable 

of working at the sampling rate of twice of 

the PWM frequency without increasing any 

cost. Similar to(29), (30) also avoids the 

EMI noise caused by the switching action, 

provides half control period for duty ratio 

calculation, and avoids the delay in the 

control loop as well. Since the current 

sampling, and other calculations are 

performed at t(k - 1/2), the rotor position 

also has to be approximated with the 

information at t(k - 1/2). Fig. 4 shows the 

approximation of ψm(θ(k),i(k)) and θ(k + 1) 

for further use. 

(A) Flux Reference Adjustment 

When implemented in a digital processor, 

the current controller has to meet physical 

limits. Normally, when a phase isturned ON, 

the phase current is expected to rise quickly 

to the reference value, however, the voltage 

applied on the phase is limited by UDC. It is 

necessary to adjust (θ(k + 1),iref(k + 1)) 
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Fig. 5. Procedure of calculating ψadj (θ(k + 
1), iref (k + 1)) andψadj (θ(k), iref (k)). 

so that uc(k) would not exceed UDC 

  (31) 

Therefore, ψm (θ(k + 1),iref(k + 1)) and ψm 
(θ(k),iref(k))in (27) should be replaced by 
ψadj (θ(k + 1),iref(k + 1)) and ψadj 
(θ(k),iref(k)), respectively. Fig. 5 shows the 

procedure of calculating ψadj (θ(k + 
1),iref(k + 1)) and ψadj 
(θ(k),iref(k))according to (31). Fig. 6 shows 

the procedure of calculating, α ˆ(k), R ˆ(k), 
and v ˆ(k) according to (28). Fig. 7 shows 

the procedure of calculating uc(k) according 

to (27). 

(B). Relationship With Previously 

Proposed Controllers 

As shown in Fig. 7, the controller of 

(27) consists of two parts: the feedback part 

and the feed forward part. The feedback part 

is sensitive to noise, while the feed forward 

part is immune to noise. In order to enhance 

the robustness of the controller, the feed 

forward part should give out most part of uc 

so that less control effort is needed by the 

feedback part. 

The digital controller of (27) has 

similar form with previously proposed 

controllers. For example, all the estimated 

parameters are taken as its real value, and k 

= 1/T , then (27) becomes 

 (32) 

This is a typical dead-beat controller 

proposed in [18]–[21]. If𝛼̂is fixed as Kp · T 

and only the adaption of 𝑣is active with a 

 
Fig.6. Procedure of calculating e, 𝛼̂ (k), 𝑅̂ 

(k), and 𝑣 (k) 
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Fig. 7. Procedure of calculating uc(k) 

gain of Ki, then (27) becomes a PI controller 

   (33) 

From this point of view, the proposed 

controller could be regarded as the 

improvement of some of the existing 

controllers. 

(D) Parameter Selection 

With the digital controller in (27), the error 

transfer function(10) could be rewritten in 

discrete domain as 

 
 (34) 

Since the sampling time T is usually small 

enough, substituting(28) into (34), the error 

dynamics can be obtained as 

 (35) 

where O is small enough bounded items, 

which could be taken as input of the error 

dynamic. The poles of the discrete transfer 

function of (35) are 

 
  (36) 

To stabilize the system, the poles should be 

placed inside the unit cycle, and hence the 

limits of the parameters are 

   
 (37) 

It can be seen that in (32), k is selected to be 

1/T and P is selected to be zero, and 

therefore, the poles are placed at zero. Due 

to the feed forward part in the proposed 

controller, a smaller could be chosen. After 

k is chosen, kα, kR, and kv are selected to 

ensure the stability. 

 

 

(V) ANFIS CONTROLLER 
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(A) Adaptive Neuro-Fuzzy Inference 

Systems: (ANFIS): 

An adaptive neuro-fuzzy inference 

system or adaptive network-based fuzzy 

inference system (ANFIS) is a kind of 

artificial neural network that is based on 

Takagi–Sugeno fuzzy inference system. The 

technique was developed in the early 1990s. 

Since it integrates both neural networks and 

fuzzy logic principles, it has potential to 

capture the benefits of both in a single 

framework. Its inference system corresponds 

to a set of fuzzy IF–THEN rules that have 

learning capability to approximate nonlinear 

functions. Hence, ANFIS is considered to be 

a universal estimator. For using the ANFIS 

in a more efficient and optimal way, one can 

use the best parameters obtained by genetic 

algorithm. 

The adaptive network based fuzzy 

inference system (ANFIS) is a data driven 

procedure representing a neural network 

approach for the solution of function 

approximation problems. Data driven 

procedures for the synthesis of ANFIS 

networks are typically based on clustering a 

training set of numerical samples of the 

unknown function to be approximated. Since 

introduction, ANFIS networks have been 

successfully applied to classification tasks, 

rule-based process control, pattern 

recognition and similar problems. Here a 

fuzzy inference system comprises of the 

fuzzy model proposed by Takagi, Sugeno 

and Kang to formalize a systematic 

approach to generate fuzzy rules from an 

input output data set. 

(B)ANFIS structure 

For simplicity, it is assumed that the fuzzy 

inference system under consideration has 

two inputs and one output. The rule base 

contains the fuzzy if-then rules of Takagi 

and Sugeno’s type as follows: 

If x is A and y is B then z is f(x,y) 

where A and B are the fuzzy sets in the 

antecedents and z = f(x, y) is a crisp 

function in the consequent. Usually f(x, y) is 

a polynomial for the input variables x and y. 

But it can also be any other function that can 

approximately describe the output of the 

system within the fuzzy region as specified 

by the antecedent. When f(x,y) is a constant, 

a zero order Sugeno fuzzy model is formed 

which may be considered to be a special 

case of Mamdani fuzzy inference system 

where each rule consequent is specified by a 

fuzzy singleton. If f(x,y) is taken to be a first 

order polynomial a first order Sugeno fuzzy 

model is formed. For a first order two rule 

Sugeno fuzzy inference system, the two 

rules may be stated as: 

 
Here type-3 fuzzy inference system 

proposed by Takagi and Sugeno is used. In 

this inference system the output of each rule 

is a linear combination of the input variables 

added by a constant term. The final output is 

the weighted average of each rule’s output. 

The corresponding equivalent ANFIS 

structure is shown in Fig. 8. 
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Figure 8: Type-3 ANFIS Structure 

The individual layers of this ANFIS 

structure are described below: 

Layer 1: Every node i in this layer is 

adaptive with a node function 

    
 (38) 

where, x is the input to node i, Ai is the 

linguistic variable associated with this node 

function and µAi is the membership 

function of Ai. Usually µAi(x) is chosen as 

 
  (39) 

  (40) 

where x is the input and {ai, bi, ci} is the 

premise parameter set. 

Layer 2: Each node in this layer is a fixed 

node which calculates the firing strength wi 

of a rule. The output of each node is the 

product of all the incoming signals to it and 

is given by, 

  (41) 

Layer 3: Every node in this layer is a fixed 

node. Each ith node calculates the ratio of 

the it rule’s firing strength to the sum of 

firing strengths of all the rules. The output 

from the ith node is the normalized firing 

strength given by, 

  
 (42) 

Layer 4: Every node in this layer is an 

adaptive node with a node function given by 

 
 (43) 

where𝑤𝑖̅̅ ̅ is the output of Layer 3 and {pi, qi, 

ri} is the consequent parameter set. 

Layer 5: This layer comprises of only one 

fixed node that calculates the overall output 

as the summation of all incoming signals, 

i.e. 

  (44) 

 

(D) Learning Algorithm 

In the ANFIS structure, it is observed that 

given the values of premise parameters, the 

final output can be expressed as a linear 

combination of the consequent parameters. 

The output f in Fig. 8 can be written as 

  (45) 
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Where f is linear in the consequent 

parameters (p1, q1, r1, p2, q2, r2). 

In the forward pass of the learning 

algorithm, consequent parameters are 

identified by the least squares estimate. In 

the backward pass, the error signals, which 

are the derivatives of the squared error with 

respect to each node output, propagate 

backward from the output layer to the input 

layer. In this backward pass, the premise 

parameters are updated by the gradient 

descent algorithm. 

 

 

 

 

 

(VI) SIMULATION RESULTS 

 
FIG9 SIMULINK DIAGRAM OF 

EXISTING SYSTEM 

 
Fig. 10. Phase current and its reference with 

hysteresis current controller at 

1000 r/min 

 
Fig. 11. Waveforms of control error(e), αˆ, 

Rˆ, and vˆ. 



 

Volume 11, Issue 08, Sep 2021          ISSN 2581 – 4575 Page 170 

 

 
FIG12 SIMULINK DIAGRAM OF 

PROPOSED SYSTEM 

 
Fig13 SIMULINK DIAGRAM OF 

PROPOSED SYSTEM CONTROLLER 

 

 
Fig. 14. Phase current and its reference with 

proposed current controller at 

1000 r/min. 

 
Fig. 15. Calculated uc of one phase during 

the simulation at 1000 r/min. 

 
Fig. 16. Waveforms of FLUX 
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(A) 

 
(B) 

 
( C) 

Fig. 17. Waveforms of control error(e), αˆ, 
Rˆ, and vˆ. 

 
(a) 

 

(b) 

Fig. 18. Phase current, current reference, the 

original flux linkage reference 

ψm (θ, iref ), and the adjusted flux linkage 
referenceψadj (θ, iref ) at 6000 r/min. 

(a) Phase current and its reference with 

proposed current controller at 6000 r/min. 

(b) Original flux linkage reference ψm (θ, 
iref), and the adjusted flux linkage reference 

ψadj (θ, iref) at 6000 r/min. 
 

VII. CONCLUSION 

ANFIS based torque controller has been 

presented in this paper for tractive 

application at low speeds. By using ANFIS 

controller, the SRM exhibits good steady-

state and dynamic performances. The SRM 

can produce maximum torque quickly while 

needing short duration overload ability. 
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