
 

Robust intelligence malware detection using deep learning 
P Sudhakar Rao  1,Tadisina Dwarak Reddy2,Md Lalmahammad3,Mavarapu Karthik4, Patha Sneha5 

2,3,4,5 UG Scholars, Department of CSE, AVN Institute of Engineering and 

Technology,Hyderabad, Telangana, India. 
1 Assoiate Professor, Department of CSE, AVN Institute of Engineering and Technology, 

Hyderabad, Telangana, India. 

 

ABSTRACT 

Internet of Things (IoT) in military settings 

generally consists of a diverse range of 

Internet-connected devices and nodes (e.g. 

medical devices and wearable combat 

uniforms). These IoT devices and nodes are a 

valuable target for cyber criminals, 

particularly state-sponsored or nation state 

actors. A common attack vector is the use of 

malware. In this paper, we present a deep 

learning based method to detect Internet Of 

Battlefield Things (IoBT) malware via the 

device’s Operational Code (OpCode) 

sequence. We transmute OpCodes into a 

vector space and apply a deep Eigenspace 

learning approach to classify malicious and 

benign applications. We also demonstrate the 

robustness of our proposed approach in 

malware detection and its sustainability 

against junk code insertion attacks. Lastly, 

we make available our malware sample on 

Github, which hopefully will benefit future 

research efforts (e.g. to facilitate evaluation 

of future malware detection approaches). 

 
INTRODUCTION 

Junk code injection attack is a malware anti- 

forensic   technique  against   OpCode 

inspection. As the name suggests, junk code 

insertion may include addition of benign 

OpCode sequences, which do not run in a 

malware or inclusion of instructions (e.g. 

NOP) that  do not actually make any 

difference in malware activities. Junk code 

insertion technique is generally designed to 

obfuscate malicious OpCode sequences and 

reduce  the  ‘proportion’ of  malicious 

OpCodes in a malware In our proposed 

approach, we use an affinity based criteria to 

mitigate junk OpCode injection anti-forensics 

technique. Specifically, our feature selection 

method eliminates less instructive OpCodes 

to mitigate the effects of injecting junk 

OpCodes. To demonstrate the effectiveness 

of   our   proposed  approach  against code 

insertion attack, in an iterative manner, a 

specified proportion (f5%, 10%, 15%, 20%, 

25%, 30%g) of all elements in each sample’s 

generated graph were selected randomly and 

their value incremented by one. For example, 

in the 4th iteration of the evaluations, 20% of 

 
 

 

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 423 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 424 

 

 

the indices in each sample’s graph were 

chosen to increment their value by one. In 

addition, in our evaluations the possibility of 

a repetitive element selection was included to 

simulate injecting an OpCode more than 

once. Incrementing Ei;j in the sample’s 

generated graph is equivalent to injecting 

OpCodej next to the OpCodei in a sample’s 

instruction sequence to mislead the detection 

algorithm. Algorithm 2 describes an iteration 

of junk code insertion during experiments, 

and this procedure should repeat for each 

iteration of k-fold validation. To show the 

robustness of our proposed approach and 

benchmark it against existing proposals, two 

congruent algorithms described in Section 1 

are applied on our generated dataset using 

Adaboost as the classification algorithm. 

LITERATURE SURVEY 

 
2.1 EXISTING SYSTEM: 

 

There are underpinning security and privacy 

concerns in such IoT environment . While 

IoT and IoBT share many of the 

underpinning cyber security risks (e.g. 

malware infection ), the sensitive nature of 

IoBT deployment (e.g. military and warfare) 

makes IoBT architecture and devices more 

likely to be targeted by cyber criminals. In 

addition, actors who target IoBT devices and 

infrastructure are more likely to be state- 

sponsored, better resourced, and 

professionally trained. Intrusion and malware 

detection   and   prevention   are   two   active 

research area. However, the resource 

constrained nature of most IoT and IoBT 

devices and customized operating systems, 

existing / conventional intrusion and malware 

detection and prevention solutions are 

unlikely to be suited for real-world 

deployment. For example, IoT malware may 

exploit lowlevel vulnerabilities present in 

compromised IoT devices or vulnerabilities 

specific to certain IoT devices (e.g., Stuxnet, 

a malware reportedly designed to target 

nuclear plants, are likely to be ‘harmless’ to 

consumer devices such as Android and iOS 

devices and personal computers). Thus, it is 

necessary to answer the need for IoT and 

IoBT specific malware detection. 

 

2.1.1 LIMITATIONS OF EXIXTING 

SYSTEM 

 

Although dynamic analysis surpasses the 

static analysis in many aspects, dynamic 

analysis also has some drawbacks. Firstly, 

dynamic analysis requires too many 

resources relative to static analysis, which 

hinders it from being deploying on resource 

constraint smartphone. 

On contrast to the above mentioned methods, 

anomaly detection engine in our proposed 

detection system performs dynamic analysis 

through Dalvik Hooking based on Xposed 

Framework. Therefore, our analysis module 

is difficult to be detected by avoiding 

repackaging and injecting monitoring code. 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 425 

 

 

Overall, previous work focuses on detecting 

malware using machine learning techniques, 

which are either misuse-based detection or 

anomaly-based detection. Misuse based 

detector tries to detect malware based on 

signatures of known malware. 

2.2 PROPOSED SYSTEM: 

 
To the best of our knowledge, this is the first 

OpCodebased deep learning method for IoT 

and IoBT malware detection. We then 

demonstrate the robustness of our proposed 

approach, against existing OpCode based 

malware detection systems. We also 

demonstrate the effectiveness of our 

proposed approach against junk-code 

insertion attacks. Specifically, our proposed 

approach employs a class-wise feature 

selection technique to overrule less important 

OpCodes in order to resist junk-code 

insertion attacks. Furthermore, we leverage 

all elements of Eigenspace to increase 

detection rate and sustainability. Finally, as a 

secondary contribution, we share a 

normalized dataset of IoT malware and 

benign applications2, which may be used by 

fellow researchers to evaluate and benchmark 

future malware detection approaches. On the 

other hand, since the proposed method 

belongs to OpCode based detection category, 

it could be adaptable for non-IoT platforms. 

IoT and IoBT application are likely to consist 

of a long sequence of OpCodes, which are 

instructions to be performed on device 

processing unit. In order to disassemble 

samples, we utilized Objdump (GNU binutils 

version 2.27.90) as a disassembler to extract 

the OpCodes. Creating n-gram Op- Code 

sequence is a common approach to classify 

malware based on their disassembled codes. 

The number of rudimentary features for 

length N is CN, where C is the size of 

instruction set. It is clear that a significant 

increase in N will result in feature explosion. 

In addition, decreasing the size of feature 

increases robustness and effectiveness of 

detection because ineffective features will 

affect performance of the machine learning 

approach. 

 
2.2.1 ADVANTAGES OVER EXISTING 

SYSTEM 

 
 The choices made in choosing 

the detection technique can determined 

the reliability and effectiveness of 

the Android malware detection system. 

 By using this approach the malicious 

application can be quickly detected 

and able to prevent the 

malicious application from being 

installed in the device. 

 Hence, by taking advantages of low 

false-positive rate of misuse detector 

and the ability of anomaly detector to 

detect zero-day malware, a hybrid 

malware detection method is proposed 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 426 

 

 

 
 

information to multiple teams - 

development, quality assurance, operation 

and maintenance.This keeps everyone on 

the same page. Using the SRS helps to 

ensure requirements are fulfilled. And it 

can also help you make decisions about 

your product’s lifecycle - for instance, 

when to retire a feature. Writing an SRS 

can also minimize overall development 

time and costs. Embedded development 

teams especially benefits from using an 

SRS. 

 
Fig 3.1.1 System Architec 

 
 

MODULE DESCRIPTION 

There are three modules can be divided 

here for this project they are listed as below 

• User Activity 

• Malware Deduction 

• Junk Code Insertion Attacks 

 
 

From the above three modules, project is 

implemented. Bag of discriminative 

words are achieved. 

 
4.1 USER ACTIVITY: 

 

User handling for some various times of 

IOT(internet of thinks example for Nest 

in this paper, which is the novelty in 

this paper. 

REQUIREMENT 

SPECIFICATIO 

NS 

SOFTWARE REQUIREMENTS: 

 

A software requirements specification 

(SRS) is a document that describes what 

the software will do and how it will be 

expected to perform. A software 

requirements specification is the basis for 

entire project. It lays the framework that 

every team involved in development will 

follow.   It’s   used   to   provide   critical 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 427 

 

 

Smart Home, Kisi Smart Lock, Canary Smart 

Security System, DHL's IoT Tracking and 

Monitoring System,Cisco's Connected 

Factory,ProGlove's Smart Glove, Kohler 

Verdera Smart Mirror.If any kind of devices 

attacks for some unauthorized malware 

softwares.In this malware on threats for user 

personal dates includes for personal contact, 

bank account numbers and any kind of 

personal documents are hacking in possible. 

 

4.2 MALWARE DEDUCTION: 

 
Users search the any link notably, not all 

network traffic data generated by malicious 

apps correspond to malicious traffic. Many 

malware take the form of repackaged benign 

apps; thus, malware can also contain the 

basic functions of a benign app. 

Subsequently, the network traffic they 

generate can be characterized by mixed 

benign and malicious network traffic. We 

examine the traffic flow header using N-gram 

method from the natural language processing 

(NLP). 

NOP) that do not actually make any 

difference in malware activities. Junk code 

insertion technique is generally designed to 

obfuscate malicious OpCode sequences and 

reduce the ‘proportion’ of malicious 

OpCodes in a malware. 

 
 

Results: 

 

HOME PAGE: This is screen that is 

opened once the project is run as shown in 

screen 1. The screen has the title name 

followed by the tabs which are follows- 

 
 

Screen 

4.3 JUNK CODE INSERTION 

ATTACKS: 

 

Junk code injection attack is a malware anti- 

forensic technique against OpCode 

inspection. As the name suggests, junk code 

insertion may include addition of benign 

OpCode sequences, which do not run in a 

malware or inclusion of instructions (e.g. 

6.3.1 Home page 

 
Registration:A registered user is a user of 

a website, program, or other system who 

has previously registered. Registered 

users    normally    provide     some     sort 

of credentials (such as a username or e- 

mail address, and a password) to the 

https://en.wikipedia.org/wiki/User_(system)
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Credential


Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 428 

 

 

system in order to prove their identity: this 

is known as logging in. Systems intended 

for use by the   general   public   often 

allow   any    user    to    register    simply 

by selecting a register or sign up 

function and providing these credentials 

for the first time. 

 

Screen 6.3.2 Registration page 
 

 

 

Screen 6.3.3 My Details 

 
Sign in: After registration process user 

must be sign in with his username and 

password .A sign in is the period of 

activity between a user sing in and sign 

out of a (multi-user) system. 
 
 

 

Screen 6.3.4 Sign in 

 

UPDATE DETAILS: In update tab the user 

can update his details 
 

 

Screen 6.3.5 Update details 

https://en.wikipedia.org/wiki/Login


Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 429 

 

 

ADMIN PAGE: 
 

NLP ANALYSIS: 

Admin login: 

 
 

Screen 6.3.6 NLP Analysis 

 

GRAPHICAL ANALYSIS: 

 

 

Admin login 

 

Screen 6.3.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Screen 6.3.6 Graphical Analysis 

OPCODE BASED MALWARE: 
 

 

Screen6.3.9 Opcode sequence analyses 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 430 

 

 

GRAPHICAL ANALYSES: 
 

Result Cases : 
  box  

3 Information 

invalid 

If 

information 

is not 

founded 

Fail 

4 Searching 

URL 

All the 

category of 

URL’s   are 

listed to 

search 

Pass 

5 Verify If the given 

URL data is 

found in 

database 

Pass 

6 NLP 

analysis 

Viewing 

results and 

graphical 

representati 

on 

Pass 

7 Feedback If the 

feedback is 

successfully 

taken 

Pass 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 431 

 

 

 

CONCLUSION: 

 

IoT, particularly IoBT, will be 

increasingly important in the foreseeable 

future. No malware detection solution 

will be foolproof but we can be certain of 

the constant race between cyber attackers 

and cyber defenders. 

TES 

T 

CAS 

ES 

DESCRIPT 

ION 

PREDICTI 

ONS 

RESUL 

TS 

1 USER Sign 

In 

If user sign 

in should 

contain 

username 

with 

alphabets 

and 

password 

with  only 

digits 

Pass 

2 Updating 

information 

Related 

information 

must be 

enter in 

specified 

Pass 

 



Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 432 

 

 

Thus, it is important that we maintain 

persistent pressure on threat actors. In this 

paper, we presented an IoT and IoBT 

malware detection approach based on class- 

wise selection of Op- Codes sequence as a 

feature for classification task. A graph of 

selected features was created for each sample 

and a deep Eigenspace learning approach was 

used for malware classification. Our 

evaluations demonstrated the robustness of 

our approach in malware detection with an 

accuracy rate of 98.37% and a precision rate 

of 98.59%, as well as the capability to 

mitigate junk code insertion attacks. 

FUTURE ENHANCEMENT: 

Android is a new and fastest growing threat 

to malware. Currently, many research 

methods and antivirus scanners are not 

hazardous to the growing size and diversity 

of mobile malware. As a solution, we 

introduce a solution for mobile malware 

detection using network traffic flows, which 

assumes that each HTTP flow is a document 

and analyzes HTTP flow requests using NLP 

string analysis. The N-Gram line generation, 

feature selection algorithm, and SVM 

algorithm are used to create a useful malware 

detection model. Our evaluation 

demonstrates the efficiency of this solution, 

and our trained model greatly improves 

existing approaches and identifies malicious 

leaks with some false warnings. The harmful 

detection rate is 99.15%, but the wrong rate 

for harmful traffic is 0.45%. Using the newly 

discovered malware further verifies the 

performance of the proposed system. When 

used in real environments, the sample can 

detect 54.81% of harmful applications, which 

is better than other popular anti-virus 

scanners. As a result of the test, we show that 

malware models can detect our model, which 

does not prevent detecting other virus 

scanners. Obtaining basically new malicious 

models Virus Total detection reports are also 

possible. Added, Once new tablets are added 

to training. 

REFERENCES : 

 https://ieeexplore.ieee.org/document/830 

2863/ 

 https://www.google.com/search?rlz=1C1 

CHBF_enIN854IN854&sxsrf=ALeKk03 

MZoDsC7Y3dMmotBRglFMni5- 

FUw%3A1590205665898&ei=4ZzIXtG 

4NqOY4- 

EP4PK3GA&q=robust+malware+detecti 

on+for+iot+devices+using+deep+eigens 

pace+learning+github&oq=robust+malw 

are+detect&gs_lcp 

 https://www.researchgate.net/publication 

/323405239_Robust_Malware_Detection 

_for_Internet_Of_Battlefield_Things_De 

vices_Using_Deep_Eigenspace_Learnin 

g 

 https://github.com/nsslabcuus/Malware 

 https://towardsdatascience.com/malware- 

detection-using-deep-learning- 

6c95dd235432 

 https://www.jetbrains.com/help/pycharm 

/configuring-project-and-ide- 

settings.html 

 https://sourceforge.net/projects/staruml/ 

http://www.google.com/search?rlz=1C1
http://www.google.com/search?rlz=1C1
http://www.researchgate.net/publication
http://www.researchgate.net/publication
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://towardsdatascience.com/malware-detection-using-deep-learning-6c95dd235432
https://www.jetbrains.com/help/pycharm/configuring-project-and-ide-settings.html
https://www.jetbrains.com/help/pycharm/configuring-project-and-ide-settings.html
https://www.jetbrains.com/help/pycharm/configuring-project-and-ide-settings.html
https://sourceforge.net/projects/staruml/

	ABSTRACT
	INTRODUCTION
	LITERATURE SURVEY
	2.1.1 LIMITATIONS OF EXIXTING SYSTEM
	2.2 PROPOSED SYSTEM:
	2.2.1 ADVANTAGES OVER EXISTING SYSTEM
	Results:
	4.3 JUNK CODE INSERTION ATTACKS:
	ADMIN PAGE:
	Admin login:
	GRAPHICAL ANALYSIS:
	OPCODE BASED MALWARE:
	GRAPHICAL ANALYSES:
	CONCLUSION:
	FUTURE ENHANCEMENT:
	REFERENCES :

