

> A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

DEEP REINFORCEMENT LEARNING BASED MULTIPREDICTOR ENSEMBLE DECISION FRAMEWORK FOR REGIONAL GDP PREDICTION

Dr. B. Sateesh Kumar Sir, K. Annapurna

Professor (Ph.d from the JNTUH) Department of CSE, Sateeshbkumar@jntuh.ac.in

M. Tech, Department of CSE, (21JJ1D5805), Kokkulaannapurna@gmail.com

ABSTRACT - Gross Domestic Product (GDP) is a good way to show how the economy is growing and how resources are being used in different areas. It's not enough to just look at a single factor when trying to figure out a region's GDP; you also need to look at factors like schooling, business, jobs, population, and more. It is important for both economics and government to be able to predict regional GDP because it tells us a lot about the economic health and growth of areas. We suggest using a Deep Reinforcement Learning-based multi-predictor ensemble decision system in this project to make area GDP forecasts more accurate and reliable. To train the GDP Prediction, we can use the Gated Recurrent Unit (GRU), the Temporal Convolutional Network (TCN), the Voting Classifier, the XGBooster, and the Deep Belief Network (DBN). These models can predict the data. In a multipredictior ensemble decision structure, a vote algorithm comes to a decision by putting together results from different predictors. The Deep Q-Network (DQN) method quickly checks how well these neural networks change to different GDP datasets so that an ensemble model can be made that gives correct results.

Keywords:-Deep Reinforcement Learning, GRU, TCN, Voting Classifier, GDP Prediction.

1. INTRODUCTION

Gross Domestic Product (GDP), which is usually calculated every three months or once a year, is an important economic number that shows how much all the goods and services made in a country were worth in money during a certain time frame. The GDP is a very important measure of a country's economic health and success. GDP is an important tool for economists, investors, decision-makers, and researchers because it helps them make smart choices about economic policies, investments, and business strategies. It also makes it easier to compare how economies are doing in different countries and gives researchers a way to study and predict the economy. It is important to remember that the GDP is not perfect and is not fully responsible for things like equal income, protecting the environment, and maintaining a high standard of living. Because of this, other measures are often added to it to get a better picture of the economic and social health of a country as a whole.

You can figure out the size and growth rate of an economy by getting an idea of its GDP. GDP can be found by adding up investment, production, and income. The GDP can then be changed to account for population and costs to get more accurate results. The foreign balance of trade, investments, growth in private stocks, paid-in building costs, and the total amount spent by both individuals and the government all count toward a country's GDP. Exports increase value whereas imports decrease it. The trade balance between nations is crucial. The GDP of a country

tends to rise when its people sell more goods and services to other countries than its own people buy from other countries. GDP, which is found by dividing GDP by a country's population, is often used to measure how well off and how well off the people who live there are.

The main goal of the study is to predict the GDP of different areas. Regional GDP projections can help with many things, such as economic planning, allocating resources, and making policy. Predictions of the regional GDP that are right can help people make decisions at both the regional and national levels. The project's goal is to create a system with a lot of predictions. It tries to combine the prediction power of several data sources or models instead of relying on a single model or forecast to figure out regional GDP. By mixing the strengths of different models, this ensemble method is often used to make predictions more accurate.

Effective regional GDP forecasting in economic operation and development may anticipate macroeconomic trends and contribute to healthy macroeconomic growth, as well as ecologically sustainable urban development. The government may forecast and anticipate market economy development to make growth plans and local economyfriendly actions [1]. Technology that can predict GDP can help change the future of sustainable growth in an area. It is the main sign of national economic accounts and a key way to measure the state and amount of growth of an economy.

It will be the key to the next level of social progress if it is used to change the way social resources are planned and distributed while keeping the economy's growth safe and sustainable. Estimating the area GDP can help local governments make better economic and science choices. A lot of experts agree that the standard GDP only looks at the growth of the economy's overall amount and doesn't take into account how natural resources and society affect the economy [2].By mixing the strengths of different models, this ensemble method is often used to make predictions more accurate. The ensemble decision framework may greatly enhance the model's ability to make predictions by mixing different parts in a smart way. Nonlinear modeling, data analysis, and feature extraction may produce this.

2. LITERATURE SURVEY

The literature looked at includes a range of different ways to model and predict the economy, with a focus on China's regional GDP and the bigger picture of economic and environmental change. Li et al. (2022) suggest a threestep feature selection and deep learning method for predicting regional GDP. They show that it works well at catching complex trends in China's economic setting [1]. Li et al. (2022) published another paper that uses deep reinforcement learning to create a multipredictor ensemble decision framework. This makes it even better at predicting regional GDP [2].

Ming et al. (2019) [3] show that fractional calculus can be used in models of Chinese economic growth. Zhou et al. (2021) look into the threshold effect of economic growth on energy usage in wealthy countries. This shows how complexly economic and energy factors interact [4]. In his 2021 paper, Pirgmaier looks at the importance of value theory for ecological economics, focusing on how important it is for understanding how economic actions affect the

environment [5]. D'amato and Korhonen (2021) suggest a long-term plan for sustainability that includes the bioeconomy, the cycle economy, and the green economy [6].

The research by Wu et al. (2019) looks at how economic downturns affect the use of materials in 157 different countries. Their findings show how economic downturns affect the use of resources [7]. Borio et al. (2020) say that the financial cycle is a key tool for predicting recessions [8]. Cohen et al. (2019) and Myszczyszyn et al. (2021) look into how emissions are no longer linked to GDP in China and how economic growth, energy use, and carbon dioxide emissions are connected in V4 countries [9, 10]. As a whole, this literature gives us a full picture of the different approaches and points of view that help us understand how economies work, how they can last, and how they affect the environment.

3. ALGORITHMS

In this project we can used algorithms like Xgboost - Voting Classifier (SVC + RF + DT) - MLP - Based on Elastic Net (ELM) - SVM - TCN - GRU - LSTM - CNN + LSTM - (DQN-TCN-GRU)

XGBoost – Extreme Gradient Boosting:

XGBoost is a well-known and useful open-source version of the gradient boosted trees method. An open source machine learning tool called XGBoost is famous for being able to solve supervised learning problems like classification and regression issues. Using gradient boosting methods, it builds a group of decision trees. Then, it puts these decision trees together to make a good prediction model. Combining the predictions of a group of simpler, weaker models is what gradient boosting does to get a good guess at a goal variable.

Fig 1 :Xgboost

Voting Classifier (SVC + RF + DT)

A Voting Classifier is a type of machine learning ensemble model that takes the results from several base classifiers and puts them all together to make a single estimate. Classification and regression are both things that it can be used for. We want to make a Voting Classifier that takes the results from three different classifiers and puts them all

together. These are the Support Vector Classifier (SVC), the Random Forest (RF), and the Decision Tree (DT). This group method usually leads to more accurate predictions than putting each algorithm to work on its own. The Voting Classifier can often lower the risk of overfitting and boost generalization, which leads to better results all around. Voting classifiers are machine learning predictors that train several base models or estimators and generate predictions depending on their results. The factors for aggregation can be used to make a decision about each estimate result.

Fig 2 : Voting Classifier

MLP:

MLPs, like ABNs, are Artificial Neural Networks used for regression and classification. This neural network is termed a feedforward neural network because data only travels from input to output. There are no loops or return links.MLPs can be used for many things, like figuring out what a picture is, understanding natural language, predicting time series, and more.

Fig 3: MLP

Based on Elastic Net (ELM) :

Based on Elastic Net—The elastic net method selects variables and makes them more regular at the same time. It is used for regression tasks, especially when working with big datasets that have traits that might be linked. By allowing limiting data in the model's coefficients, Elastic Net can do feature selection and stop overfitting. When the

dimensional data is bigger than the number of samples used, the elastic net method works best. The elastic net

technique's main jobs are to group factors and choose which ones to use.

Fig 4: ELM

SVM:

Support Vector Machine (SVM) is a type of guided machine learning that can do both regression and classification. Even though we talk about regression problems, they work best for sorting. Most of the time, it works best for binary classification tasks, but it can also be used for regression and multi-class classification. SVMs are famous for being able to find the best hyperplane in a high-dimensional feature space to separate data points into different groups.

Fig 5: SVM

GRU:

The Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network (RNN) design that was created to fix some problems with traditional RNNs, such as the loss of gradients and long-term dependence. People often use GRUs, which are a type of Long Short-Term Memory (LSTM) network, for sequential data tasks like natural language processing, speech recognition, and time series forecasts. GRUs use less computing power than LSTM networks and can find long-range relationships in linear data.

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

GRU

LSTM:

In the area of deep learning, Long Short-Term Memory networks, or LSTMs, are used. This is a type of Recurrent Neural Networks (RNNs) that might be able to learn long-term connections, especially when predicting sequences.

CNN + LSTM:

Long Short-Term Memory (LSTM) and Convolution Neural Network (CNN) layers work together in a model to guess sequences and pull out traits from incoming data.

4. SYSTEM ARCHITECTURE

System Architecture summarizes the project. Database, features, fundamental models, Q-Learning ensemble technique, and assessment modules comprise the system architecture. These modules forecast GDP.

Fig 8: System Architecture

5. COMPARISON TABLE

S. Title Author/Reference Method/Algorithm implemented Advantage Disadvantag N o A Novel Multi- Factor Three-Step Feature Selection andDeep Learning Framework for Regional GDP Prediction:Evidenc e from China LiQingwen, YanGuangxi, and YuChengming The proposed framework involves three steps: (1) Feature Crossing uses an algorithm to extract key information from original datasets. (2) BorutaRF and Q-learning analyze deep correlations to select high-quality 1. The three- step framework significantly introduce computational complexity, prediction accuracy by over 10%, providing more regional GDP in developing 1. The featur crossing algorithm introduce computational complexity, prediction accuracy by over 10%, providing more regional GDP in developing	<u>+'</u>						
o A Novel Multi- Factor Three-Step Feature Selection andDeep Learning LiQingwen, YanGuangxi, and Feature Selection andDeep Learning The proposed framework 1. The three- step 1. The featu crossing algorit and deep learn model m Framework for Regional GDP Prediction:Evidenc e from China [1] The proposed framework 1. The three- step 1. The featu crossing algorit and deep learn model m original datasets. GOP (2) BorutaRF and Q-learning analyze deep correlations to select high-quality features. (3) TCN 1. The featu crossing algorit and deep learn model m	1	S. N	Title	Author/Reference	Method/Algorithm implemented	Advantage	Disadvantage
1 A Novel Multi- Factor Three-Step LiQingwen, YanGuangxi, and YuChengming The proposed framework 1. The featu crossing algorit 1 Factor Three-Step YanGuangxi, and YuChengming framework 1. The three- step andDeep Learning [1] steps: (1) Feature framework Framework for crossing uses an significantly Prediction:Evidenc afrom China algorithm to Prediction:Evidenc e from China information from original datasets. prediction accuracy by over 10%, prediction Q-learning analyze deep forecasts for resources implementation analyze deep features. (3) TCN in developing and training		0					
utilizes selected areas. effectiveness features to build a robust 2. Compared to 14 benchmark BorutaRF and learning prediction model, achieving over models, the proposed algorithms m		1	A Novel Multi- Factor Three-Step Feature Selection andDeep Learning Framework for Regional GDP Prediction:Evidenc e from China	LiQingwen, YanGuangxi, and YuChengming [1]	The proposed framework involves three steps: (1) Feature Crossing uses an algorithm to extract key information from original datasets. (2) BorutaRF and Q-learning analyze deep correlations to select high-quality features. (3) TCN utilizes selected features to build a robust GDP prediction model, achieving over	 The three- step framework significantly improves TCN's prediction accuracy by over 10%, providing more reliable forecasts for regional GDP in developing areas. Compared to 14 benchmark models, the proposed 	 The feature- crossing algorithm and deep learning model may introduce computational complexity, potentially requiring substantial resources for implementation and training on large datasets. The effectiveness of BorutaRF and Q- learning algorithms may vary across

Table.1: A summary of Image Deblurring Aided by Low-Resolution Events

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

			10% accuracy	system	datasets, making
			improvement and	demonstrates	the system
			outperforming 14	superior	sensitive to data
			benchmarks with	forecasting	characteristics and
			MAPE values	capabilities,	potentially
			consistently below	outperforming	impacting
			5%.	competitors	generalizability.
				and achieving	
				lower MAPE	
				values	
				consistently	
				below 5%.	
2	A New	Li Qingwen, Yu	The proposed	1. The	1. The integration
_	Multipredictor	Chengming, and	method employs	ensemble	of multiple
	Ensemble Decision	Yan Guangxi	GRU, TCN, and	framework	predictors and the
	Framework Based	[2]	DBN as predictors	leverages	DQN algorithm
	on Deep		for regional GDP	diverse	may introduce
	Reinforcement		forecasting. Deep	predictors and	complexity in
	Learning for		reinforcement	deep	implementation
	Regional GDP		learning,	reinforcement	and model
	Prediction		specifically the	learning,	interpretation.
			DQN algorithm,	achieving	2. Deep
			analyzes the	superior GDP	reinforcement
			adaptability of	prediction	learning training
			these predictors to	accuracy	may require
			diverse GDP	surpassing	significant
			datasets,	benchmark	computational
			optimizing	models.	resources and
			ensemble weight	2. DQN	time, potentially
			coefficients for	algorithm	limiting real-time
			improved	dynamically	applicability.
			prediction	adjusts	
			performance	ensemble	
			exceeding 10%	weights,	
			over individual	optimizing	

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

A The Application of H. Ming J. We utilized in Consistently outperforming benchmark models with lower MAPE values. The Application of H. Ming J. We utilized 1. Caputo 1. Implementing fractional Calculus Wang and M Caputo-type fractional Calculus may calculus to model improves Offering more widespread acount of the comparative reliable a adoption and analysis with predictions understanding integer order compared to 2. The fractional calculus approach models was traditional calculus approach models was traditional calculus approach may in density with predictions compared to 2. The fractional calculus approach may integer order compared to 2. The fractional calculus approach may in density with predictions computational resources, the BIC criterion assist potentially posing Results indicate in identifying challenges in that the Caputo fractional approach provides accuracy in explanatory predicting CDP power and values (2012) 2016). Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. Twei, and C. Li employed a threshold regression model				predictors.	model	
3 The Application of Fractional Calculus H. Ming. J. We utilized Values. 1. Caputo 1. Implementing benchmark models with lower MAPE 3 The Application of Fractional Calculus H. Ming. J. We utilized 1. Caputo 1. Implementing fractional 3 Fractional Calculus Wang, and M. Caputo-type fractional Caputo fractional 6 Felkan fractional order calculus to model improves GDD require a steep Models Gommark growth in R accuracy. hindering curve. software. offering more widespread adoption and integer order calculus approach canduted, integer order may demand more growth in R conducted, integer order models conducted, integer order may demand more conducted, integer order may demand more conducted, integer order may demand more conducted, integer order may demand more conducted, integer order may demand more growth in R					performance	
3 The Application of I. Ming J. We utilized in Chinese Feckan Caputo-type fractional Caputo fractional 3 Tractional Calculus Wang and M. Caputo-type fractional Calculus <					and	
3 The Application of Fractional Calculus in Chinese Economic Growth Models H. Ming. J. Wang and M. Fractional order (3) We utilized Caputo-type fractional fractional fractional calculus may calculus model improves GDP modeling growth in R accuracy, software Comparative analysis with integer order compared to compared to compared to calculus aray growth in R accuracy, software Compared to compared to calculus approach integer order prioritizing models. J. Implementing fractional calculus may elearning curve, provide accuracy, software compared to calculus approach may demand more prioritizing models. 4 Threshold Effect of comput fractional the Sthout on Energy Intensity— J. Zhou, Z. Ma T. Wei, and C. Li employed a threshold regression model 1. The the complexity of the complexity of					consistently	
3 The Application of Fractional Calculus H. Mfing, J. Wang, and M. in Chinese We Feckan We fractional order calculus 1. Caputo values. 1. Implementing fractional calculus 3 The Application of Fractional Calculus Wang, and M. Values. Caputo-type fractional calculus 1. Caputo calculus Caputo fractional calculus 4 The Application of Fractional Calculus Feckan fractional fractional calculus to model improves GDP modelis require a steep modelis 4 Models Improves of the fractional conducted, integer offering more comparative analysis widespread comparative analysis analysis Improves of the fractional conducted, integer calculus approach integer comparative computational calculus approach integer calculus approach integer analysis Improves the BIC crucial fractional approach provides canculas in teenarcet in identifying that the Caputo fractional approach provides constrained approach provides 4 Threshold Effect of the Since Growth on Energy J. Zhou, Z Ma T. Wei, and C. Li employed The study 1. The 1. 4 Threshold Effect of the shold J. Zhou, Z Ma T. Wei, and C. Li employed threshold Oversimplification model model					outperforming	
3 The Application of H. Ming, J. We utilized 1. Caputo 1. Implementing fractional Calculus Wang, and M. Caputo-type fractional calculus amy calculus to model improves GDP require a steep Models 13 3 Fractional Calculus Wang, and M. Caputo fractional calculus or may fractional calculus or may fractional calculus or may improves GDP require a steep modeling learning curve, bindering software. Improves GDP require a steep offering more widespread adoption and analysis with predictions integer order compared to 2. The fractional conducted, integer order may demand more prioritizing models. 4 Threshold Effect of J. Zhou, Z Ma, and C. Li employed a threshold of threshold integer order Integersion model is accuracy in threshold integersion and analysis accuracy in the study 1. The 1. 4 Threshold Effect of J. Zhou, Z Ma, threshold integersion model is approach may be accuracy in threshold integersion may and threshold integersion may integersion model is accuracy in threshold integersion may and threshold integersion may integersion in threshold integersion may and threshold integersion may and threshold integersion may and threshold integersion may and threshold integersion may integersion integersion may and threshold integersion integersion may integritien integersion inthregistintegitication integersintegersintegersion intege					benchmark	
Investigned Investigned <thinvestigned< th=""> <thinvestigned< th=""></thinvestigned<></thinvestigned<>					models with	
Image: space					lower MAPE	
3 The Application of H. Ming. J. We utilized I. Caputo 1. Implementing Gaputo-type fractional calculus may fractional calculus may improves GDP require a steep learning curve, growth in R accuracy, software. Comparative analysis with integer order compared to calculus approach models. 1. Implementing Gaputo fractional calculus may require a steep learning curve, growth in R accuracy, software. Comparative analysis with integer order compared to calculus approach models. 1. Implementing Gaputo fractional calculus may require a steep learning curve, growth in R accuracy. Integriting the growth integer order compared to compared to calculus approach models. 4 Threshold Effect of J. Zhou, Z. Ma, on Energy Intensity— J. Zhou, Z. Ma, The study 1. The I. 4 Threshold Effect of J. Wei, and C. Li on Energy Intensity— J. Zhou, Z. Ma, The study 1. The I. 4 Threshold Effect of J. Wei, and C. Li on Energy Intensity— The study 1. The study 1. The I.					values.	
³ Fractional Calculus Wang, and M. Caputo-type fractional Caputo fractional in Chinese Fečkan fractional order calculus calculus may Economic Growth [3] Calculus to model improves GDP require a steep Models Chinese GDP modeling learning curve, growth in R accuracy, offering more widespread Comparative offering more widespread analysis with predictions understanding integer order comparative models calculus approach models was traditional calculus approach models. computational variables traditional calculus approach in identifying the BIC crucial resources, that the Caputo traditicate in identifying constrained approach provids refining the constrained approach provids calculus interpretability. constrained constrained approach provids calculus constraine		The Application of	H. Ming, J.	We utilized	 Caputo 	1. Implementing
in Chinese Fečkan fractional order calculus calculus may Economic Growth [3] calculus to model improves GDP require a steep Models Chinese GDP modeling learning curve, growth in R accuracy, hindering widespread Comparative offering more widespread analysis with proteining understanding integer order comparative reliable adoption and integer order comparative reliable comparative understanding integer order comparative reliable comparative adoption and integer order comparative reliable comparative comparative adoptional integer order comparative reliable adoptional comparative integer order comparative rediculus approach comparative comparative comparative resources resources resources comparative adoptional accurus<	3	Fractional Calculus	Wang, and M.	Caputo-type	fractional	Caputo fractional
Economic Growth Models[3]calculus to model improves GDP (hinese GDP growth in R software.improves GDP modeling improves GDP improves GDP accuracy, bindering software.require a steep learning curve, bindering software.Values (AComparative (Comparative analysis with integer order conducted, integer orderoffering more offering modelswidespread adoption and and analysis with predictionsValues (Comparative (Comparative (Comparative)reliable adoptionadoption and and analysis with predictionsunderstanding understanding integer order (compared to 2). The fractional models.Values (Comparative (Conducted, (Conducted, (Conducted, (Conducted, (Comparative) (Conducted, (Comparative)calculus approach models.Variables through (Comparative)2. The BIC (Comparative)resources, (Comparative)Variables through (Conducted, (Conducted, (Conducted, (Conducted, (Conducted, (Comparative))potentially posing (Comparative)Results indicate (Conducted, (Conducte		in Chinese	Fečkan	fractional order	calculus	calculus may
Models Chinese GDP modeling learning curve, growth in R accuracy, hindering software. offering more widespread adoption and analysis with predictions understanding integer order compared to 2. The fractional conducted, integer order may demand more prioritizing models. computational resources, potentially posing Results indicate in identifying the BIC criterion assists potentially posing Results indicate in identifying the environments. enhanced model's enhanced model's enhanced model's accuracy in explanatory predicting GDP power and values (2012- 2016). Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. Constrained may not capture Intensity— IT. Wei, and C. Li employed a threshold Oversimplification on Energy [4] threshold regression model model the complexity of		Economic Growth	[3]	calculus to model	improves GDP	require a steep
4 Threshold Effect of J. Zhou, Z. Ma, The shold Effect of J. Zhou, Z. Ma, The shold accuracy hindering 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1.		Models		Chinese GDP	modeling	learning curve,
4Intershold Effect of I Threshold Effect				growth in R	accuracy,	hindering
4 Threshold Effect of J. Zhou, Z. Ma, Comparative reliable adoption and 4 Threshold Effect of J. Zhou, Z. Ma, Comparative reliable adoption and 4 Threshold Effect of J. Zhou, Z. Ma, The study study nodel study adoption and 4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Threshold Effect of J. Zhou, Z. Ma, The study athreshold regression may not capture 1 Intensity— [4] threshold regression may demain models 1 Threshold Effect of J. Zhou, Z. Ma, The study studyst				software.	offering more	widespread
4 Intreshold Effect of J. Zhou, Z. Ma, or Market of Compared to understanding, integer order compared to 2. The fractional 4 Integer order compared to calculus approach models was traditional calculus approach 4 Integer order models was traditional calculus approach 4 Integer order models models computational 4 Integer order models computational calculus approach 1 The shold Effect of J. Zhou, Z. Ma, The study 1. The 1. 4 Intensity— Intensity— regression model model may not capture				Comparative	reliable	adoption and
4 Inteshold Effect of J. Zhou, Z Ma, The study integer order compared to 2. The fractional 4 Inteshold Effect of J. Zhou, Z Ma, The study 1. The 1. 4 Intensity— Intensity— Intensity— Integersion model Oversimplification				analysis with	predictions	understanding.
4Intershold Effect of A modelsJ. Zhou, Z. Ma, on Energymodelstraditional conducted, prioritizing wariables through in identifyingcalculus approach may demand more prioritizing variables through in identifying crucialcomputational resources, potentially posing crucial4Threshold Effect of on EnergyJ. Zhou, Z. Ma, regression modelThe study1.The intershold4Threshold Effect of on EnergyJ. Zhou, Z. Ma, regression modelThe study1.The intershold4Threshold Effect of on EnergyJ. Zhou, Z. Ma, regression modelThe study1.The intershold4Threshold Effect of on EnergyJ. Zhou, Z. Ma, regression modelThe regression model1.The intershold4Threshold Effect of intensityJ. Zhou, Z. Ma, regression modelThe regression model1.The intershold4Threshold Effect of intensityJ. Zhou, Z. Ma, regression modelThe study regression1.The intensity				integer order	compared to	2. The fractional
4Threshold Effect of E Conomic Growth on EnergyJ. Zhou, Z. Ma, on Energyconducted, prioritizing the BIC criterion the BIC criterion. criterion assist in identifying crucial crucial crucial crucial resource- constrained enhanced accuracy in predicting GDP prower and values (2012- interpretability. 2016).may demand more computational resources, potentially posing challenges in resource- constrained environments.4Threshold Effect of on Energy IntensityJ. Zhou, Z. Ma, the shold the sholdThe study1.The the shold threshold threshold threshold4Threshold Effect of on EnergyJ. Zhou, Z. Ma, thresholdThe study1.The threshold threshold1.4Threshold Effect of on EnergyJ. Zhou, Z. Ma, thresholdThe study1.The threshold1.4Threshold Effect of on EnergyJ. Zhou, Z. Ma, thresholdThe study1.The threshold1.4Threshold Effect of on EnergyJ. Zhou, Z. Ma, thresholdThe study1.The threshold1.4Threshold Effect of on EnergyJ. Zhou, Z. Ma, thresholdThe study1.The the complexity of				models was	traditional	calculus approach
4 Intershold Effect of Large Lar				conducted,	integer order	may demand more
4 Threshold Effect of on Energy J. Zhou, Z. Ma, on Energy The shold 2. The BIC resources, criterion assists potentially posing in identifying challenges in indentifying challenges in that the Caputo crucial resource-fractional variables, constrained approach provides refining the environments. 4 Threshold Effect of on Energy J. Zhou, Z. Ma, threshold intershold regression model The study in threshold regression model 1. The study intershold regression may not capture regression model				prioritizing	models.	computational
4 Threshold Effect of on Energy J. Zhou, Z. Ma, on Energy The shold C. Li on Energy J. Zhou, Z. Ma, on Energy The shold c. Li on Energy Threshold Effect on Energy J. Zhou, Z. Ma, on threshold c. Li on Energy Threshold c. Li on C. Li				variables through	2. The BIC	resources,
4Threshold Effect of on Energy Intensity—J. Zhou, Z. Ma, resideThe studyStudy regression modelI.The resource- constrained environments.4Threshold Effect of on Energy Intensity—J. Zhou, Z. Ma, regression regression regression regression regression regression regression regression regression regression regression regression regressionI.The resource- constrained environments.4Threshold Effect of regression regression regression regression regressionJ. Zhou, Z. Ma, regression regression regressionI.The regression regression regressionJ.				the BIC criterion.	criterion assists	potentially posing
4Threshold Effect of on Energy Intensity—J. Zhou, Z. Ma, that the Caputothat the Caputo crucial fractional approach provides refining refining refining refining the enhanced accuracy predicting 2012- 2016).constrained environments.4Threshold Effect of on Energy Intensity—J. Zhou, Z. Ma, the thresholdThe employed threshold threshold threshold1.The threshold threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold threshold1.The threshold threshold threshold1.The threshold1.1.4Threshold Effect of threshold threshold1.The threshold threshold1.The threshold1.1.4Threshold Effect of threshold1.The threshold threshold1.The threshold1.1.4Threshold thresholdregression thresholdThe threshold1.The threshold1.1.4Threshold thresholdregression thresholdThe thresholdThe threshold1.The threshold1.				Results indicate	in identifying	challenges in
4 Threshold Effect of on Energy Interset J. Zhou, Z. Ma, Intershold C. Li The shold c. Li employed a threshold c. Li over and threshold 4 Intensity— Intensity— refining the environments. interpretability. 1 Threshold Effect of threshold J. Zhou, Z. Ma, Intershold c. Li employed a threshold c. Li may not capture 1 Threshold Effect of threshold T. Wei, and C. Li employed a threshold threshold 1 Threshold Effect of threshold T. Wei, and C. Li employed a threshold threshold 1 Threshold Effect of threshold T. Wei, and C. Li employed a threshold threshold				that the Caputo	crucial	resource-
4 Threshold Effect of on Energy Intensity— J. Zhou, Z. Ma, Intensity— The shold C. Li employed a threshold regression model 1. The shold effect of threshold regression model 1. The shold effect of threshold regression model				fractional	variables,	constrained
4 Economic Growth on Energy Identified J. Zhou, Z. Ma, Identified The shold Effect of Identified J. Zhou, Z. Ma, Identified Interpretability. 4 Economic Growth Identified T. Wei, and C. Li employed a threshold Intershold Oversimplification may not capture regression model 1 threshold regression model The complexity of the com				approach provides	refining the	environments.
4 Intershold Effect of on Energy [4] J. Zhou, Z. Ma, Intershold C. Li employed a threshold regression model 1. The shold Oversimplification may not capture regression model				enhanced	model's	
4 Threshold Effect of on Energy Intensity— J. Zhou, Z. Ma, The study I. The study I. The I. J. Zhou, Z. Ma, The study I. The I. 4 Economic Growth I. Wei, and C. Li employed a threshold regression may not capture regression model May not capture the complexity of the c				accuracy in	explanatory	
4 Threshold Effect of on Energy Intensity— J. Zhou, Z. Ma, The study 1. The 1. 4 Conomic Growth T. Wei, and C. Li employed a threshold on Energy Intensity— regression model model				predicting GDP	power and	
4 Threshold Effect of J. Zhou, Z. Ma, The study 1. The l. 4 Economic Growth on Energy Intensity— [4] threshold regression model ondel				values (2012-	interpretability.	
4 Threshold Effect of L. Zhou, Z. Ma, The study 1. The I. 4 Economic Growth on Energy Intensity— T. Wei, and C. Li employed a threshold on Energy Intensity— threshold regression model model Oversimplification may not capture the complexity of				2016).		
4 Economic Growth T. Wei, and C. Li employed a threshold Oversimplification on Energy [4] threshold regression may not capture Intensity— regression model the complexity of		Threshold Effect of	J. Zhou, Z. Ma,	The study	1. The	1.
on Energy [4] threshold regression may not capture Intensity— regression model model the complexity of	4	Economic Growth	T. Wei, and C. Li	employed a	threshold	Oversimplification
Intensity		on Energy	[4]	threshold	regression	may not capture
		Intensity—		regression model	model	the complexity of

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

Evidence from 21	on panel data from	optimizes	economic and
Developed	21 developed	energy	energy dynamics,
Countries	countries (1996-	intensity	leading to
	2015) to analyze	reduction by	potential
	the impact of	considering	inaccuracies.
	economic growth	key factors and	2. Limited to
	on energy	development	1996–2015, the
	intensity. Key	stages.	system may not
	factors were	2. The system	account for
	considered, such	provides	evolving trends
	as energy mix,	tailored advice	and unforeseen
	urbanization,	for well-	changes in energy
	industrial	developed	dynamics.
	structure, and	economies,	
	technological	emphasizing	
	progress,	cleaner energy,	
	revealing varying	urbanization,	
	effects based on	tertiary	
	development	industries, and	
	stages and	advanced	
	thresholds.	technologies.	
	1	1	

6. SUMMARY

This project creates a multi-predictor ensemble decision system based on Deep Reinforcement Learning so that accurate and reliable regional GDP predictions can be made. The system uses models like GRU, TCN, Voting Classifier, and XGBooster, and a Deep Q-Network method to make it better at adapting to different GDP datasets. The ensemble method, which uses a vote algorithm to combine the strengths of each indicator, makes accurate predictions about area GDP. This new way of using deep reinforcement learning shows that predictions are more accurate, which is useful for economic planning and government.

7. CONCLUSION

Gross Domestic Product (GDP) is a key measure of the health of a country's or region's economy and the long-term growth of society. Technology that predicts GDP helps the regional government study and make decisions about economic policy. Deep reinforcement learning is used in this project to come up with a Multi predictor Ensemble Decision Framework for predicting GDP. To train the GDP forecast, there are three models: GRU (Gated Recurrent Units), TCN (Temporal Convolutional Network), Voting Classifier, XG Booster, and DBN (Deep Belief Networks).

A peer reviewed international journa ISSN: 2457-0362

www.ijarst.in

These models can predict the data. In a multipredictor ensemble decision system, a voting algorithm makes a choice by putting together results from a number of different predictors. Unlike regular RNN and shallow neural network frameworks, these three neural networks are better at analyzing the original features of GDP and making accurate predictions thanks to the way they are built. The DQN (Deep Q-Network) method quickly checks how well these three neural networks change to different GDP datasets so that an ensemble model can be made that gives correct results. The DQN algorithm gave us the final data for predicting GDP. There are several GDP datasets that can be used by the DBN, TCN, Voting Classifier, XG Booster, and GRU to make accurate predictions. Features of the industrial organization, past GDP data, and schooling all have a big effect on how well GDP predictions work. In the end, the project does better when the ensemble multi-predictor regional GDP forecast system based on deep reinforcement learning is used.

8. FUTURE SCOPE

In the coming years, it will be very important to make regional economic growth plans that use GDP predictions and policies that are specific to each area. These tactics will be very important for good governance because they will help governments control the economy on a large scale based on correct GDP predictions. This method that looks to the future makes it easier to make strategic decisions, which gives officials the power to make the best use of resources, promote long-term growth, and deal with new problems that come up in regional economies. By making sure that policies are in line with what they think will happen in the future, governments can make the economy more stable and help areas grow. This keeps growth goals in line with how the economy is changing.

9. **REFERENCES**

[1]LiQingwen, YanGuangxi, and YuChengming, "A Novel Multi-Factor Three-Step Feature Selection andDeep Learning Framework for Regional GDP Prediction:Evidence from China" Sustainability vol. 14, p. 4408, 2022.

[2] Li Qingwen, Yu Chengming, and Yan Guangxi, "A New Multipredictor Ensemble Decision

Framework Based on Deep Reinforcement Learning for Regional GDP Prediction", vol. 10,45267, May. 2022.

[3] H. Ming, J. Wang, and M. Fečkan, "The Application of Fractional Calculus in Chinese Economic Growth Models," Mathematics, vol. 7, no. 8, p. 665, Jul. 2019.

[4] J. Zhou, Z. Ma, T. Wei, and C. Li, "Threshold effect of economic growth on energy intensity—Evidence from 21 developed countries," Energies, vol. 14, no. 14, p. 4199, 2021.

[5] E. Pirgmaier, "the value of value theory for ecological economics," Ecol. Econ., vol. 179, Jan. 2021, Art. no. 106790.

[6] D. D'amato and J. Korhonen, "Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework," Ecol. Econ., vol. 188, Oct. 2021, Art. no. 107143.

[7] Z. Wu, A. Schaffartzik, Q. Shao, D. Wang, and G. Li, "Does economic recession reduce material use? Empirical evidence based on 157 economies worldwide," J. Cleaner Prod., vol. 214, pp. 823–836, Mar. 2019.

[8] C. Borio, M. Drehmann, and F. D. Xia, "Forecasting recessions: The importance of the financial cycle," J. Macroecon., vol. 66, Dec. 2020, Art. no. 103258.

[9] G. Cohen, J. T. Jalles, P. Loungani, R. Marto, and G. Wang, "Decoupling of emissions and GDP: Evidence from aggregate and provincial Chinese data," Energy Econ., vol. 77, pp. 105–118, Jan. 2019.

[10] J. Myszczyszyn and B. Suproń, "Relationship among economic growth (GDP), energy consumption and carbon dioxide emission: Evidence from V4 countries," Energies, vol. 14, no. 22, p. 7734, 2021.