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ABSTRACT 

A deep-learning-based channel estimation method for chaotic wireless communication is 
proposed in this letter, which is based on a deep neural network (DNN) pre-trained by the 
stacked denoising autoencoder (SDAE) structure. The DNN learns the channel parameters by 
using the autocorrelation function (ACF) of the received signal in the sense of minimizing the 
mean squared error (MSE). Numerical results demonstrate that the proposed scheme learns 
the channel very well and significantly outperforms the conventional schemes in terms of the 
channel estimation MSE, as well as the BER performance of the communication system. The 
proposed channel estimation method based on the ACF of chaotic signal is robust to the noise 
because of the effect of the double noise resistance operation including the autocorrelation 
operation and the denoising autoencoder. The proposed scheme is a blind identification 
method, which uses the received signal directly, by this way, saves the valuable bandwidth 
resource without any probe signal 

I.INTRODUCTION 

COMMUNICATION with chaos has 
attracted significant interest in the literatures 
[1], [2], [3], [4] since early 1990s. In recent 
years, more properties of chaos have been 
reported to be fit for wireless 
communication applications, such as the 
Lyapunov spectrum invariance property of 
chaotic signal after transmitted through 
wireless channel [5]. Chaos is proven to be 
the optimal communication waveform in the 
sense of very simple matched filter being 
used to achieve the maximum signal to 
noise ratio (SNR) [6]; the chaotic baseband 
waveform generated by the chaotic shape-

forming filter (CSF) is proven to be 
topologically conjugate to the symbolic 
sequence [7], which means that arbitrary 
information sequence can be encoded into 

the chaotic waveform; the intersymbol 
interference (ISI) caused by multipath 
propagation can be eliminated in theory by 
using the proper decoding threshold [8], and 
the chaotic waveform can be used as the 
baseband signal under the conventional 
wireless communication system framework, 
in order to improve the bit error rate (BER) 
performance with the simpler and lower cost 
algorithm [9]. However, the distortion of 
wireless channel transmission in outdoor 
environment significantly degrades the 
performance of both the conventional 
wireless communication system and chaotic 
wireless communication system. A good 
channel estimation helps improving the 
BER performance, and making the 
communication system reliable. For this 
purpose, it is generally required to transmit 
a pilot sequence in the conventional 
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estimation methods, such as the classical 
least squared (LS) approach, minimum 
mean squared error (MMSE) algorithm [10] 
and so on. On one hand, the conventional 
methods always need the pilot (training) 
sequence sent before the data sequence, 
which consumes the valuable bandwidth and 
reduces the data transmission rate. On the 
other hand, the conventional channel 
estimation methods are generally suffering 
from performance degradation due to the 
serious environment noise. To deal with 
these challenges, the autocorrelation 
function (ACF) property of the chaotic 
signal is exploited in [11], and it is used to 
identify the channel parameters without any 
pilot sequence, which improves the channel 
identification performance effectively. 
However, the blind channel identification 
based on ACF of chaotic signal is a 
complicated process by resolving a 
mathematical nonlinear problem. Thus, a 
novel solution is expected to avoid solving 
the complicated nonlinear equation. Due to 
the excellent generalization ability and 
powerful learning capacity of deep learning 
(DL) [12], it is opening up new way for the 
problems that are difficult to be solved by 
conventional methods in wireless 
communication [13], [14], as well as in 
chaotic wireless communication [15], [16], 
[17]. There have been many interesting 
results about using DL for the physical 
layer, including channel estimation [18], 
signal detection [19], etc. Among the DL 
applications to wireless communication 
systems, channel estimation is one of the 
most widely studied issues. Recently, the 
DL estimator has emerged as a promising 
alternative to address channel estimation 
problem in wireless communication systems 
[20] and shown excellent performance. The 
first attempt has been made in [21] to learn 

the characteristics of frequency selective 
wireless channels and combat the nonlinear 
distortion and interference for orthogonal 
frequency division multiplexing (OFDM) 
systems by applying the powerful DL 
methods. In [22], a novel framework 
incorporates DL method into massive 
multiple-input multiple-output (MIMO) 
systems to address channel estimation 
problems. From another viewpoint, the 
channel matrix is regarded as an image, the 
better channel estimation performance was 
obtained by employing a DL based image 
super-resolution and denoising technique in 
[23]. Another branch of research attempts to 
establish a novel endto-end deep neural 
network (DNN) architecture to replace all 
modules in communication system, instead 
of strengthening only certain modules [19], 
[24]. However, the aforementioned DL 
based channel estimation methods are 
implemented by using training data 
transmitted together with the information 
data, which increased additional bandwidth 
consumption. To reduce the overload and 
fulfill further performance improvement, it 
is desired to estimate the channel parameters 
without any pilot data by using the DL 
method. Different from the above DL based 
methods, a DNN structure with a pre-trained 
stacked denoising autoencoder (SDAE) is 
proposed to estimate the channel parameters 
in the chaotic baseband wireless 
communication system (CBWCS). In 
contrast to the analytical method using the 
ACF of chaotic signal in [11], the proposed 
scheme learns the channel parameters very 
well, meanwhile, the calculation error and 
the noise effect are suppressed. The 
contributions include: 1) A DL based 
channel estimation method is proposed 
without any pilot data, in which the pre-

trained SDAE is used in the DNN structure 
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to extract the channel state structure 
information from the ACF of the received 
signal. 2) The off-line training and online 
prediction mechanism is designed in the 
proposed DL based channel estimation 
scheme, in which the training time is not the 
application constraint, and the real time 
computation cost is affordable. 3) 
Simulation results show the efficiency and 
superiority of the proposed method in the 
sense of the smaller mean squared error 
(MSE) of channel estimation and BER 
performance, as compared to the other 
estimation methods. 

II.LITERATURE SURVEY 

S. Hayes, C. Grebogi, and E. Ott, 
“Communicating with chaos,” Phys. Rev. 
Lett., vol. 70, no. 20, p. 3031, May 1993. 

Control of chaos refers to a process wherein 
a tiny perturbation is applied to a chaotic 
system, in order to realize a desirable 
(chaotic, periodic, or stationary) behavior. 
We review the major ideas involved in the 
control of chaos, and present in detail two 
methods: the Ott–Grebogi–Yorke (OGY) 
method and the adaptive method. We also 
discuss a series of relevant issues connected 
with chaos control, such as the targeting 
problem, i.e., how to bring a trajectory to a 
small neighborhood of a desired location in 
the chaotic attractor in both low and high 
dimensions, and point out applications for 
controlling fractal basin boundaries. In 
short, we describe procedures for stabilizing 
desired chaotic orbits embedded in a chaotic 
attractor and discuss the issues of 
communicating with chaos by controlling 
symbolic sequences and of synchronizing 
chaotic systems. Finally, we give a review 
of relevant experimental applications of 
these ideas and techniques. A deterministic 
system is said to be chaotic whenever its 

evolution sensitively depends on the initial 
conditions. This property implies that two 
trajectories emerging from two different 
closeby initial conditions separate 
exponentially in the course of time. The 
necessary requirements for a deterministic 
system to be chaotic are that the system 
must be nonlinear, and be at least three 
dimensional. 

The fact that some dynamical model 
systems showing the above necessary 
conditions possess such a critical 
dependence on the initial conditions was 
known since the end of the last century. 
However, only in the last thirty years, 
experimental observations have pointed out 
that, in fact, chaotic systems are common in 
nature. They can be found, for example, in 
Chemistry (Belouzov–Zhabotinski reaction), 
in Nonlinear Optics (lasers), in Electronics 
(Chua–Matsumoto circuit), in Fluid 
Dynamics (Rayleigh–Bénard convection), 
etc. Many natural phenomena can also be 
characterized as being chaotic. They can be 
found in meteorology, solar system, heart 
and brain of living organisms and so on. 

Due to their critical dependence on the 
initial conditions, and due to the fact that, in 
general, experimental initial conditions are 
never known perfectly, these systems are 
instrinsically unpredictable. Indeed, 
the prediction trajectory emerging from 
a bonafide initial condition and 
the real trajectory emerging from 
the real initial condition diverge 
exponentially in course of time, so that the 
error in the prediction (the distance between 
prediction and real trajectories) grows 
exponentially in time, until making the 
system's real trajectory completely different 
from the predicted one at long times. 
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For many years, this feature made chaos 
undesirable, and most experimentalists 
considered such characteristic as something 
to be strongly avoided. Besides their critical 
sensitivity to initial conditions, chaotic 
systems exhibit two other important 
properties. Firstly, there is an infinite 
number of unstable periodic orbits 
embedded in the underlying chaotic set. In 
other words, the skeleton of a chaotic 
attractor is a collection of an infinite number 
of periodic orbits, each one being unstable. 
Secondly, the dynamics in the chaotic 
attractor is ergodic, which implies that 
during its temporal evolution the system 
ergodically visits small neighborhood of 
every point in each one of the unstable 
periodic orbits embedded within the chaotic 
attractor. 

A relevant consequence of these properties 
is that a chaotic dynamics can be seen as 
shadowing some periodic behavior at a 
given time, and erratically jumping from 
one to another periodic orbit. The idea of 
controlling chaos is then when a trajectory 
approaches ergodically a desired periodic 
orbit embedded in the attractor, one applies 
small perturbations to stabilize such an 
orbit. If one switches on the stabilizing 
perturbations, the trajectory moves to the 
neighborhood of the desired periodic orbit 
that can now be stabilized. This fact has 
suggested the idea that the critical 
sensitivity of a chaotic system to changes 
(perturbations) in its initial conditions may 
be, in fact, very desirable in practical 
experimental situations. Indeed, if it is true 
that a small perturbation can give rise to a 
very large response in the course of time, it 
is also true that a judicious choice of such a 
perturbation can direct the trajectory to 
wherever one wants in the attractor, and to 

produce a series of desired dynamical states. 
This is exactly the idea of targeting. 

The important point here is that, because of 
chaos, one is able to produce an infinite 
number of desired dynamical behaviors 
(either periodic and not periodic) using the 
same chaotic system, with the only help 
of tiny perturbations chosen properly. We 
stress that this is not the case for a 
nonchaotic dynamics, wherein the 
perturbations to be done for producing a 
desired behavior must, in general, be of the 
same order of magnitude as the unperturbed 
evolution of the dynamical variables. 

The idea of chaos control was enunciated at 
the beginning of this decade at the 
University of Maryland [1]. In Ref. [1], the 
ideas for controlling chaos were outlined 
and a method for stabilizing an unstable 
periodic orbit was suggested, as a proof of 
principle. The main idea consisted in 
waiting for a natural passage of the chaotic 
orbit close to the desired periodic behavior, 
and then applying a small judiciously 
chosen perturbation, in order to stabilize 
such periodic dynamics (which would be, in 
fact, unstable for the unperturbed system). 
Through this mechanism, one can use a 
given laboratory system for producing an 
infinite number of different periodic 
behavior (the infinite number of its unstable 
periodic orbits), with a great flexibility in 
switching from one to another behavior. 
Much more, by constructing appropriate 
goal dynamics, compatible with the chaotic 
attractor, an operator may apply small 
perturbations to produce any kind of desired 
dynamics, even not periodic, with practical 
application in the coding process of signals. 

It is reasonable to assume that one does not 
have complete knowledge about the system 
dynamics since our system is typically 
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complicated and has experimental 
imperfections. It is better, then, to work in 
the space of solutions since the equations, 
even if available, are not too useful due to 
the sensitivity of the dynamics to 
perturbations. One gets solutions by 
obtaining a time series of one dynamically 
relevant variable. The right perturbation, 
therefore, to be applied to the system is 
selected after a learning time, wherein the 
dependence of the dynamics on some 
external control is tested experimentally. 
Such perturbation can affect either a control 
parameter of the system, or a state variable. 
In the former case, a perturbation on some 
available control parameter is applied, in the 
latter case a feedback loop is designed on 
some state variable of the system. 

The first example of the former case is 
reported in Ref. [1]. Let us draw the 
attention on a chaotic dynamics developing 
onto an attractor in a D-dimensional phase 
space. One can construct a section of the 
dynamics such that it is perpendicular to the 
chaotic flow (it is called Poincaré section). 
This (D−1)-dimensional section retains all 
the relevant information of the dynamics, 
which now is seen as a mapping from the 
present to the next intersection of the flow 
with the Poincare’ section. Any periodic 
behavior is seen here as a periodic cycling 
among a discrete number of points (the 
number of points determines the periodicity 
of the periodic orbit). Since all periodic 
orbits in the unperturbed dynamics are 
unstable, also the periodic cycling in the 
map will be unstable. Furthermore, since, by 
ergodicity, the chaotic flow visits closely all 
the unstable periodic orbits, this implies that 
also the mapping in the section will visit 
closely all possible cycles of points 
corresponding to a periodic behavior of the 
system. Let us then consider a given 

periodic cycle of the map, such as period 
one. A period one cycle corresponds to a 
single point in the Poincaré section, which 
repeats itself indefinitely. Now, because of 
the instability of the corresponding orbit, 
this point in fact possesses a stable manifold 
and an unstable manifold. For stable 
(unstable) manifold we mean the collection 
of directions in phase space through which 
the trajectory approaches (diverges away 
from) the point geometrically. The control 
of chaos idea consists in perturbing a control 
parameter when the natural trajectory is in a 
small neighborhood of the desired point, 
such that the next intersection with the 
Poincaré section puts the trajectory on the 
stable manifold. In this case, all divergences 
are cured, and the successive natural 
evolution of the dynamics, except for 
nonlinearities and noise, converges to the 
desired point (that is, it stabilizes the desired 
periodic behavior). Selection of the 
perturbation is done by means of a 
reconstruction from experimental data of the 
local linear properties of the dynamics 
around the desired point. 

III.EXISTING SYSTEM 

Nowadays confidential data transfer is a 
crucial task in many multinational 
companies, military departments, 
intelligence and surveillance departments, 
and so on. In such departments and 
companies lots of efforts are put forth for 
securing confidential data. Therefore, they 
need Data encryption and decryption for 
their applications. An example, which is 
given below describes data encryption and 
decryption to secure data using Zigbee 
wireless communication technology for 
short and long distances. With help of many 
encryption and decryption techniques we 
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can achieve the goal of secure 
communication. 

IV.PROPOSED SYSTEM 

Everyone in this world wants to be safe and 
secure. When it comes to the safety and 
security of Multinational companies, 
Military, Army, the situation becomes more 
complicated. Even a common man puts his 
maximum efforts to protect his data. One of 
the popular methods to protect the data in a 
more secure way is to encrypt the data while 
sending and when received, decrypt the data 
to retrieve the original message. Before 

transmitting the data, the data will be 
converted into an unreadable form and will 
be sent. At the receiving end, the reverse of 
encryption carries on to get back the original 
message. Thus the data will be protected in 
every way by following the encryption and 
decryption standard formats. Wireless 
makes this project more flexible. Standard 
algorithms require software to be installed 
into the system before actually using them 
and hardwired connections. The hardware 
connections and cabling can be completely 
eliminated in this project 

Block diagram 

 

 

V.CONCLUSION 

To summarize, a novel channel estimation 
scheme using the DNN with pre-trained 
SDAE is proposed in this letter, which is 
based on the ACF property of the chaotic 
baseband signal generated by the CSF. The 
strong noise reduction and generalization 
abilities of SDAE make the channel 

estimation MSE performance and the 
corresponding BER performance of 
CBWCS better than that using the same 
DNN structure without pre-trained SDAE, 
as well as present superior performance than 
those of the blind ACF analytical method, 
and the conventional non-blind LS method 
using chaotic driven signal. Moreover, by 
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using off-line training mechanism, the 
computational complexity is a less  

concern, which is beneficial to the real-time 
communication applications. 

VI.REFERENCES 

[1] S. Hayes, C. Grebogi, and E. Ott, 
“Communicating with chaos,” Phys. Rev. 
Lett., vol. 70, no. 20, p. 3031, May 1993.  

[2] A. Dmitriev, A. Kletsov, A. Laktyushkin, 
A. Panas, and S. Starkov, “Ultrawideband 
wireless communications based on dynamic 
chaos,” J. Commun. Technol. Electron., vol. 
51, no. 10, pp. 1126–1140, Oct. 2006.  

[3] H. P. Ren, C. Bai, Q. J. Kong, M. S. 
Baptista, and C. Grebogi, “A chaotic spread 
spectrum system for underwater acoustic 
communication,” Physica A Stat. Mech. 
Appl., vol. 478, pp. 77–92, Jul. 2017.  

[4] H.-P. Yin and H.-P. Ren, “Direct symbol 
decoding using GA-SVM in chaotic 
baseband wireless communication system,” 
J. Frankl. Inst., vol. 358, no. 12, pp. 6348–
6367, Aug. 2021.  

[5] H. P. Ren, M. S. Baptista, and C. 
Grebogi, “Wireless communication with 
chaos,” Phys. Rev. Lett., vol. 110, no. 18, 
2013, Art. no. 184101.  

[6] N. J. Corron and J. N. Blakely, “Chaos 
in optimal communication waveforms,” 
Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 
471, no. 2180, Aug. 2015, Art. no. 
20150222.  

[7] H. P. Ren, C. Bai, and C. Grebogi, 
Chaotic Shape-Forming Filter and 
Corresponding Matched Filter in Wireless 
Communication, Chapter in Advances on 
Nonlinear Dynamics of Electronic Systems. 
Hackensack, NJ, USA: World Sci. Press, 
Jan. 2019.  

[8] J. L. Yao, C. Li, H. P. Ren, and C. 
Grebogi, “Chaos-based wireless 
communication resisting multipath effects,” 
Phys. Rev. E, Stat. Phys. Plasmas Fluids 
Relat. Interdiscip. Top., vol. 96, no. 3, Sep. 
2017, Art. no. 32226.  

[9] J.-L. Yao, Y.-Z. Sun, H.-P. Ren, and C. 
Grebogi, “Experimental wireless 
communication using chaotic baseband 
waveform,” IEEE Trans. Veh. Technol., vol. 
68, no. 1, pp. 578–591, Jan. 2019.  

[10] S. Coleri, M. Ergen, A. Puri, and A. 
Bahai, “Channel estimation techniques 
based on pilot arrangement in OFDM 
systems,” IEEE Trans. Broadcast., vol. 48, 
no. 3, pp. 223–229, Sep. 2002.  

[11] H.-P. Yin, H.-P. Ren, and C. Grebogi, 
“Autocorrelation invariance property of 
chaos for wireless communication,” 2022, 
arXiv:2204.08287. 


