

Volume 11, Issue 12, Dec 2022 ISSN 2457 – 0362 Page 164

BARIUM SEARCH USING PYTHON
1
Boini sri sushmitha

1
UG, Dept. of Computer science Engineering, Mallareddy Engineering College for Women.

Abstract

With the growing amount of data in recent years, capturing large sets of data to identify the insights and

visions of extracting data has become increasingly important. In this project, extracting keywords is one of

the most important tasks while working with text data in the domains of text mining, information retrieval,

and natural language processing. In order to achieve this, we propose our project, Barium Search, a

standalone cross-platform application implemented in Python. The main aim of this project is to enable the

system to go through the various files by using the word and prepare the list of files based on the search.

Before accessing the data for the users, it will first encrypt the index information and save it to the database

for their use. It can handle the information in multiple text file formats. This project will be able to provide

users' required information at one particular place by using the word entered by the user during their search

operation. This is a relatively new research topic, and many studies remain to be done.

Keywords:- LSR, NLP, Barium Search.

1. INTRODUCTION

The popularity of any search engine is contingent

upon two parameters - how quickly it can return

results and how relevant the results are. This is

true for not just search engines but any scenario

where large databases need to be scanned for

fetching documents or data. In order to achieve

the first parameter of faster retrieval, indexing

mechanisms are used. Two types of indexing are

possible forward and inverted. In forward

indexing, documents are normally stored as a list

of words. Whereas, in inverted indexing, the list

of documents in which the given word appears is

stored. The indexes must be stored in such a way

that they can be accessed and retrieved quickly by

search algorithms. Currently, the indexes are

stored in the look up table in a random fashion

without forming a logical sequence. Hence,

iterating through the look up table for fetching an

inverted index of a given word becomes a time

consuming process. For example, in a table , if a

search algorithm needs access to the inverted

indexes for the word love, it will have to perform

a linear search starting from the top of the table

until it finds the entry for 'love'. Instead, some

mechanism should be used to determine the

position in the look up table where the word and

its inverted index needs to be stored. Moreover,

searching algorithms can apply the same

mechanism to directly get the row number of the

look up table where the indexes have been stored.

In this paper, we propose using hashing as the

mechanism for the same. Since tables are basically

2-dimensional arrays, direct access of a particular

row is possible. Thus this technique eliminates the

overhead of iterating through the look up table i.e.

linear search for fetching the desired entry. In

summary, we create a (logical) forward index via

hashing to store the output of inverted index.

2. RELATED WORK

The existing search mechanisms were able to

search only the files that are saved in the system.

So there was no mechanism for searching the data

inside the files as per the user search query. Most

of time, users were not able to get their desired

information and this section keeps users at their

limit. Users were able to get information only if

the file name is known.

Some special mechanism has been used to work

on the concept of crawling which can be

integrated with this project. As to work under real

time situation, it will enable the system, to go

through the various files by using the word and

prepare the list of files based on the search. Before

accessing the data to the users, it will first encrypt

the index information and saves them to the local

Volume 11, Issue 12, Dec 2022 ISSN 2457 – 0362 Page 165

database for their use. The proposed system will

be able to retrieve the files containing the query

word within less than one second.

3. IMPLEMENTATION

Fig 1: Architecture diagram

Dataset

A data set (or dataset) is a collection of data. In

the case of tabular data, a data set corresponds to

one or more database tables, where every column

of a table represents a particular variable, and each

row corresponds to a given record of the data set

in question. The data set lists values for each of

the variables, such as height and weight of an

object, for each member of the data set. Each

value is known as a datum. Data sets can also

consist of a collection of documents or files.

Fig 2: Dataset

Linear Search Algorithm

Searching is the process of finding some particular

element in the list. If the element is present in the

list, then the process is called successful, and the

process returns the location of that element;

otherwise, the search is called unsuccessful.

Linear search is also called as sequential search

algorithm. It is the simplest searching algorithm.

In Linear search, we simply traverse the list

completely and match each element of the list

with the item whose location is to be found. If the

match is found, then the location of the item is

returned; otherwise, the algorithm returns NULL.

It is widely used to search an element from the

unordered list, i.e., the list in which items are not

sorted. The worst-case time complexity of linear

search is O(n).

Natural Language Processing

Natural language processing (NLP) is a subfield

of linguistics, computer science, and artificial

intelligence concerned with the interactions

between computers and human language, in

particular how to program computers to process

and analyze large amounts of natural language

data. The goal is a computer capable of

"understanding" the contents of documents,

including the contextual nuances of the language

within them. The technology can then accurately

extract information and insights contained in the

documents as well as categorize and organize the

documents themselves.

4. EXPERIMENTAL RESULTS

Fig 3: Search operation

Volume 11, Issue 12, Dec 2022 ISSN 2457 – 0362 Page 166

Fig 4: Search Operation (2)

5. CONCULSUION

Thus, a new approach for searching the data inside

the files to display files that contains the searched

term has been implemented in this project. This

project also discusses about reading files of

formats like .txt, .pdfs and .docx. Finally,

considering the popularity of data extraction in

many areas, the Barium Search application is

provided. Future research might focus on included

the image and other file formats too.

6. REFERENCES

[1] J. Giridharan and S. Vairavan, "Inverted index

and interval lists for keyword search", 2014

International Conference on Green Computing

Communication and Electrical Engineering

(ICGCCEE), 2014.

[2] Hao Wu, Guoliang Li, and Lizhu Zhou, Ginix,

“Generalized Inverted Index for keyword Search”,

transactions on knowledge and data mining Vol:8

No:1 Year 2013.

[3] M. Singh and D. Garg, "Choosing Best

Hashing Strategies and Hash Functions", 2009

IEEE

International Advance Computing

Conference,2009.

[4] N. Ram, R. Ranjan, S. Chakrabarti and D.

Samanta, "Application of Data Structure in the

field of Cryptography", in Proceedings of the

International Conference, Computational Systems

for Health \& Sustainability, R.V.College of

Engineering,

Bangalore,Karnataka,PIN560059,INDIA, 2015,

pp.65-68.

[5] M. Ilic, P. Spalevic and M. Veinovic,

"Inverted index search in datamining", 2014 22nd

Telecommunications Forum Telfor

(TELFOR),2014.

[6] H. Williams and J. Zobel, "Indexing and

retrieval for genomic databases", IEEE Trans.

Knowl. Data Eng., vol. 14, no. 1, pp. 63-78,2002.

[7] Harth A, Decker S. Optimized index structures

for querying rdf from the web. InThird Latin

American Web Congress (LA-WEB'2005) 2005

Oct(pp. 10-pp). IEEE.

[8] Brin S, Page L. Reprint of: The anatomy of a

large-scale hypertextual web search engine.

Computer networks. 2012 Dec 17;56(18):3825-

33.

[9] Valduriez P. Join indices. ACM Transactions

on Database Systems (TODS). 1987 Jun

1;12(2):218-46.

[10] Bayardo RJ, Ma Y, Srikant R. Scaling up all

pairs similarity search. InProceedings of the 16
th

international conference on World Wide Web

2007 May 8 (pp. 131-140). ACM.

