

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

Design & Implementation of NPC Inverter for Autonomous PV Array Excited Wind Driven Induction Generator for off grid Application in India

Gurram Poorna Chandra Rao¹, M.Tech, Department of EEE, Swetha Institute of Technology & Science, Tirupati, AP

Dr. E. Kiran Kumar², Prof, Department of EEE, Swetha Institute of Technology & Science, Tirupati, AP.

ABSTRACT

This paper presents the control of a Autonomous PV array exited Wind driven Induction and three-level neutral point clamped (NPC) voltage source inverter (VSI). Decoupling control strategy of three levels VSI is proposed to control the current injected into the Local Loads, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal load currents, and to ensure reactive power compensation. The proposed system performance is investigated at different operating conditions. An isolated renewable energy system (RES) is fully based on RES, but at the same time reliable is necessary for meeting the power demands of remote places where utility grid is not available and for which hybrid wind solar systems plays a crucial role. In this paper, a simplified control scheme has been presented for a stand-alone hybrid PV array excited wind driven induction generator considering and three-level neutral-point-clamped (NPC) voltage source inverter (VSI) with a three phase variable load with or without unbalance. Any stand alone system employs a battery, however the system is supposed to deliver power even in the absence of battery and the battery less mode of operation is presented in this paper. The control scheme has been validated with simulation results.

Index Terms—off gird, PV, wind, wind driven induction generator, NPC inverter.

I. INTRODUCTION

Centralized power generation systems are facing the twin constraints of shortage of fossil fuel and need to reduce the emissions. Long distance transmission lines are one of the main causes for electrical power losses. So, emphasis has increased on distributed generation (DG) networks with integration of

renewable energy systems into the national grid, which lead to efficiency and reduction in emissions. With the rise of the renewable energy penetration into the grid, power quality of low voltage power transmission system is becoming a major area of interest.

emphasis has increased on distributed Most of available integration of generation (DG) networks with integration of renewable energy systems to the grid takes

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

place with the aid of power electronics There is a strong need for off grid power converters. The primary use of the power electronic converters is to integrate the DG to the grid in compliance with power quality inverters can inject more harmonics to the systems, creating major PQ problems if it is not implemented properly.

Filtering methods like Hybrid Filtering (Combination of series passive and shunt Active Power Filter) & Inductively Active Filtering are the latest development of interfacing devices between distribution supply (grid) and consumer appliances to overcome voltage/current disturbances and improve the power quality by compensating the reactive and harmonic power generated or absorbed by the load.

Solar is the one of most promising DG sources and their penetration level to the grid is on the rise. Although the advantage of Distributed generation includes voltage decrease transmission support, in distribution losses and improved reliability. PQ problems [1] are also of growing concern. This paper deals with the research and development of PQ problems related to solar integrated to the grid and the impact of poor power quality.

The connection topologies of filtering into the system to overcome the PQ problems are also discussed. Over 400 million people in India, including 47.5% of those living in India's rural areas, still has no access to electricity. Because of the remoteness of much of India's un-electrified population, renewable energy can offer an economically viable means of providing connections to these groups.

generation, to cater those sectors, where either grid extension is either not feasible or not cost effective. Isolated renewable energy systems standards. But, high frequency switching of that is based fully on renewable resources and at the same time reliable is necessary for meeting the power demands of remote places where utility grid is not available. For which hybrid wind-solar systems play a crucial role. Since solar and wind have inherent complimentary profile, it becomes an attractive choice for a hybrid renewable energy scheme.Many hybrid schemes have been already reported in literature as well as exists in practice [1] - [4]. Normally in hybrid windsolar schemes, PMSG (permanent magnet Synchronous generators), is invariably used as the wind driven generator especially for a standalone applications [5]-[10]. In such hybrid schemes based on PV and wind driven PMSG, the varying amplitude varying frequency of the stator voltage of the PMSG and the variable dc voltage of the PV array have to be suitably conditioned using complex power-electronic interfaces. However, for any off-grid system, it is desirable to install components and their associated controls that are maintenance free and economical. In this context, Self excited induction generators using capacitors have been reported in the literature [11]-[12]. Squirrel Cage Induction Generator (SCIG) which is robust, inexpensive, require little maintenance and possess higher power-weight ratio over PMSG, much cheaper than PMSG desirable choice would for remotestandaloneapplication. But despite these advantages, wind-driven capacitor-excited induction generators are not preferred in

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

remote power systems due to unsatisfactory voltage regulation and frequency power quality parameters at point of common variation .However to exploit the advantages of IG as well as to overcome the above drawback, hybrid system employing a dc-dc converter fed 3-phase Voltage Source inverter (VSI) as power interface stage, battery charged by solar photo voltaic cells (PV) and the PV excited Induction Generator (IG) driven by wind have been reported in the literature[10]. The three phase Load, output of IG and output of the VSI forms a Point of Common Coupling (PCC). This hybrid scheme can operate to supply the required load even in the absence of battery [11]. However in this work, a fixed resistive load has been considered for the controller design as well as unbalance in load has not been considered. Further to this, hybrid scheme based on PV and IG reported in the literature [15]-[16], need a utility grid for its operation. Most of them employ a doubly fed induction generator [17]-[18], which is once again expensive [19]-[21]. It is attempted to develop a robust and reliable control scheme for autonomous hybrid system based on PV source and wind driven induction generator that can provide continuous regulated three phase output voltage for all types of load with or without unbalance.

In the present work, a simplified controller for battery less mode operation has been developed for a PV fed Boost Converter fed Inverter excited wind driven IG scheme (PVEWIG) to regulate the inverter DC link in the absence of battery. In this scheme, a three phase variable resistive as well as inductive load with or without unbalance has been considered. The proposed controller ensures

their voltage regulation of DC link and improves the coupling (PCC) under varying irradiation, temperature of PV array and wind speed variation in the wind generator.

II. THE PV ARRAY FED INVERTER EXCITED WIND DRIVEN IG

The PVEWIG system consists of PV array, dc-dc converter, battery, 3 leg inverter, wind driven three phase squirrel cage induction generator and a non-linear load. The PV array feeds a dc-dc boost converter. The voltage across the dc-dc boost converter is connected to a battery, which is inverted by a three phase inverter and the IG is integrated to the inverter output and is locked to inverter voltage and frequency. The IG would require reactive power which it would normally draw from a utility grid in a grid connected scheme. In the present scheme, the reactive power required by the induction machine is supplied by the PV array fed inverter.

The output of the inverter acts as a virtual grid providing a constant voltage and frequency. The three-phase load is connected to inverter output and is supplied by PV-IG and battery or PV-IG, the load-sharing being dependent on irradiation and wind speed. The inverter output, IG output and load forms the point of common coupling (PCC). The block schematic of the entire PVEWIG scheme is shown in Fig. 1. One of the unique features of this hybrid scheme is that, this system employs an induction generator without a need of either utility grid or excitation capacitors, thereby avoiding all the disadvantages associated with it. In the absence of battery, the real power

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

balance is such that the sum of PV array power parameters cause the input as well as load of and real power output of IG equals the inverter the dc-dc converter to vary. In this event, the power output which is delivered to the load. Controller works in voltage regulation mode. The power balancing is explained in more detail in the subsequent sections.

The dc-link voltage is regulated using a cascaded PI-SMC control in which the outer

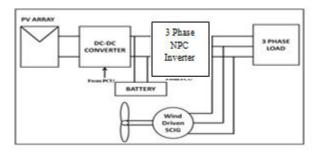


Figure 1: Block diagram of the Power Circuit for PVEWIG System with NPC Inverter

III. CONTROL SCHEME OF THE PVEWIG

In this paper, battery less operation of the PVEWIG scheme has been considered. The system should continue to deliver power uninterrupted during the absence of battery, which might happen either due to deep discharge or fully charged condition of the battery. Also it might be necessary to remove the battery from the system for a brief duration for maintenance. In this mode, the boost converter will act in a voltage regulation mode and maintains constant DC link voltage under all conditions of weather and load changes. The Inverter is triggered by an open loop sinusoidal PWM controller. The control block diagram of the dc-dc boost converter used in this scheme is shown in Figure 2.

The V-I characteristics of PV array varies with irradiation and temperature and this shifts the operating point of the PV array. Further, the variation of wind speed alters the shaft torque to the induction generator. These varying

parameters cause the input as well as load of the dc-dc converter to vary. In this event, the controller works in voltage regulation mode. The dc-link voltage is regulated using a cascaded PI-SMC control in which the outer loop consists of a PI regulator and the inner loop consists of a sliding mode current controller (SMC) as shown in Fig. 2. The outer PI controller generates a current reference from its input voltage error between reference (Vo_ref) and actual output voltage (Vo) of dc-dc converter. The error between reference (IL_ref) and actual

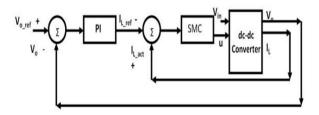


Figure 2 Block diagram of Cascaded PI-SMC controller for output voltage regulation of dc-dc boost converter

Inductor current (I_{L_act}) is given as input to SMC which generates the gate pulse for the boost converter IGBT. The basic principle of SMC involves design of a sliding surface in its control law which would direct the trajectory of the state variables towards a desired origin. Normally in a single switch dc–dc converter, the control law that adopts a switching function is given by $u \ sign(S)$ where u^{c} is the

switching function (logic state) of the converter's power switch and the state variable is the inductor current. Based on the general sliding mode control theory, the state variable error is defined as the difference between actual and reference value (of the inductor

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

current), which forms the sliding function subsystems. The block diagram of the entire given by $Si_{l_actual} i_{l_ref}$. hybrid scheme used for simulation is shown in

A. Inverter Control of PVEWIG scheme

When an IG is interfaced with the grid or in the proposed scheme with a "PV fed DC-DC converter fed inverter", initially there is a huge difference between the induced emf of the IG and the inverter voltage which causes a sudden inrush. The magnitude of this inrush depends on the initial speed of the rotor and the residual flux of the stator of the IG. If the rotor starts from zero speed then the magnitude of inrush is very severe, this is normally 5 to 6 times that of the rated current (which is the case of an induction motor). In this hybrid scheme, the IG is electrically integrated with the inverter output when the speed of the IG is slightly synchronous speed above the corresponds to the cut in speed of the wind turbine. Therefore in such condition the magnitude and duration of the inrush is not much severe and could be withstood by the input dc source of the inverter. However, the output voltage of the inverter is gradually increased, by slowly increasing the modulation index of the sine PWM controller to totally eliminate any possibility of inrush current.

IV. MATLAB SIMULATION OF THE PVEWIG SYSTEM

The simulation is performed using the mathematical models of PV array, dc-dc boost converter, induction machine, voltage source inverter (VSI) and the load in order to reduce the memory size and computation time of the simulation, which would otherwise make the simulation more complex as the entire hybrid scheme with control consists of several

subsystems. The block diagram of the entire hybrid scheme used for simulation is shown in Figure 3. The mathematical equations governing the mathematical models of different subsystem shown in figure 3 are illustrated in Table I.

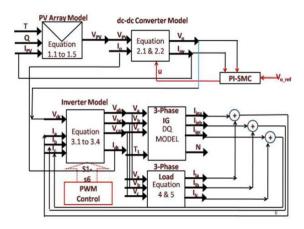


Figure 3 Block Diagram Representing the Mathematical Model of PVEWIG System

The PV model [22] is expressed as given in (1.1) to (1.5) and the dc-dc boost converter model is given by (2.1) to (2.2). The classical dq model is used for representing induction generator [23]. The inverter equations and load circuit are represented using (3) to (5). In this scheme, the total real power of the load is shared between inverter and IG. The reactive power of the load as well as the IG is met by the inverter. The real, reactive and apparent power distributions assuming the losses in the inverter and dc-dc converter are negligible, are given by (6) to (8).

The instantaneous current distribution at the point of common coupling (PCC) is given by (9).

$$\begin{split} P_{biverter} + P_{IG} &= P_{load} & \dots (6) \\ Q_{biverter} &= Q_{IG} + Q_{load} & \dots (7) \\ S_{load} &= S_{biverter} + S_{IG} & \dots (8) \\ i_{biverter_abc} + i_{IG_abc} &= i_{load_abc} & \dots (9) \end{split}$$

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

Table I

System Parameters of PVEWIG system Considered for Simulation and used for Hardware Implementation and Validation

~	n .	~	**	** *
S.no	Parameters	Symbol	Unit	Value
1.	Total Load Power	P _{load}	Watts	3450
2.	Rated Power of	P _{RL_load}	Watts	1350
	Resistive-Inductive			
	load			
3.	Rated Power of	$P_{R,load}$	Watts	2100
	Lamp Load			
	(Resistive load)			
4.	Rated Power of	Pro	Watts	2250
	Induction Generator			
5.	Rated power of PV	P_{PV}	Watts	2400
	array at STC	- 20		
6.	Rated AC RMS	V_{rms}	Volts	400
	Line-Line Voltage	11115		
	of the System			
7.	Nominal DC Link	VDC	Volts	570
	Voltage of the	- 20		
	Inverter			
8.	Open Circuit	Voc	Volts	19.5
	Voltage of PV	- 00		
	Module			
9.	Short Circuit	I _{sc}	Amps	3.3
	Current of PV	-	•	
	Module			
10.	Number of PV	N _{pv_s}	Nos	20
	Module in Series			
11	Number of PV	N _{pv p}	Nos	2
-	Strings in Parallel		_	

Neglecting the losses in the inverter and boost converter, the real power output of inverter equals the real power output of PV array ($P_{Inverter} = P_{pv}$) in voltage regulation mode when the battery is isolated either due to deep discharge or fully charge condition. The different parameters considered for simulation is given Table II. Multiple loads have been considered for simulation which includes a lamp load (pure resistive) and a Resistive-inductive load. The simulation block diagram of the entire hybrid scheme along with the controller implemented in MATLAB/Simulink is shown in Fig. 4.

The starting response of the PVEWIG system is shown in figure 5. It could be observed the real power of load is shared between inverter and IG, while the reactive power of the load and IG is supplied by the inverter. During starting, the modulation index of the sine PWM inverter is gradually increased from its initial zero value, which facilitates integration of IG with the inverter

without any inrush current as shown in figure 6. The steady state waveforms of voltage at PCC and current of PVEWIG system including load, IG and inverter are shown in figure 7. The distribution of real power among PV array and IG under disturbances in irradiation, wind turbine speed and load is shown in figure 8a. In this case the temperature is maintained constant at 35 deg Celsius. It can be observed the system rms voltage remains constant except for a short duration disturbance as shown in figure 8a. Also the real power balance is ensured among the two sources PV array and IG, providing a regulated output voltage to the load. The response of the system for a wind speed variation at a constant load and irradiation is shown in figure 8b. It can be observed, the controller ensures the power balance and maintaining constant DC link voltage. Further, in this case the power delivered by the IG increases with the wind while the PV power decreases speed accordingly, less than its available power for the given irradiation. However, the objective of the controller here is to regulate the DC link voltage in the battery less mode of operation.

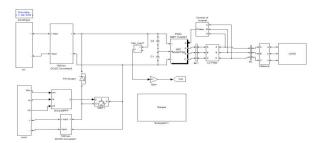


Figure 4 Simulation Model in Matlab Representing the of PVEWIG System with Three phase Inverter

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

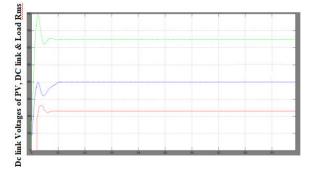


Figure 5 Simulation results: Dc link Voltages of PV, DC link & Load Rms

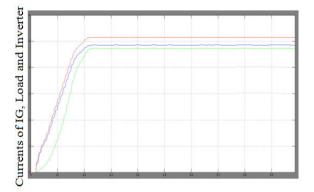


Figure 6 Simulation results RMS Currents of Load, Induction Generator & Inverter

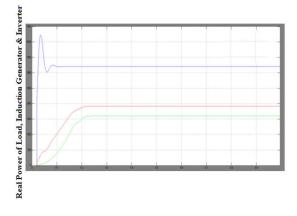


Figure 7 Simulation results: Real Power of Load, Induction Generator & Inverter

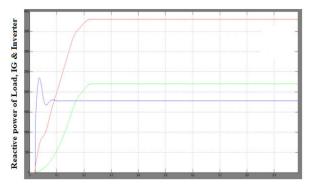


Figure 8 Simulation results Reactive power of Load, IG & Inverter

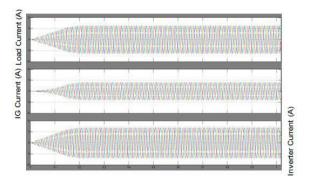


Figure 5.6 Simulation results: Three phase currents of the Load, IG & Inverter

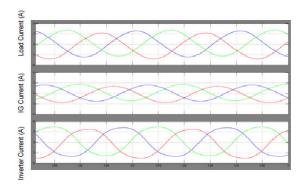


Figure 5.7 Simulation results: Zoom View of Three phase currents of the Load, Induction Generator & Inverter

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

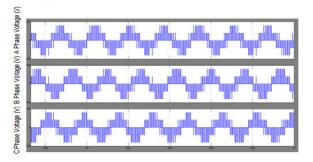
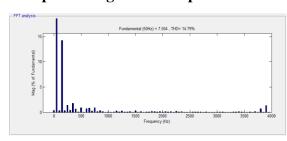



Figure 5.8 Simulation Results: Inverter output Voltages without passive filter

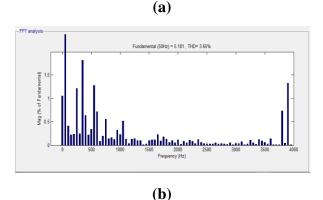


Figure 5.9 Current THD in % (a) PVEWIG with Normal Inverter (b) PVEWIG with NPC Inverter

Figure 5.9 (b) show that PVEWIG with NPC Inverter can achieve the less THD Values (3.65%) when compared with PVEWIG with Normal Inverter (i.e.14.79%).

CONCLUSION

Decoupling control strategy of three levels NPC Inverter is proposed to control the current injected into the Local Loads, reactive power compensation, and DC-link voltage. The resulting system is able to extract the maximum power from photovoltaic generator, to achieve sinusoidal load currents, and to ensure reactive power compensation. The proposed system performance is investigated at different operating conditions. A cascaded PIcontrol **SMC** has been successfully implemented for a dc-dc boost converter interfaced between PV array and a three phase voltage source inverter of a PVEWIG system for regulating the inverter DC link voltage. The modeling and simulation results of the battery less operation of PVEWIG scheme have been presented. The complete field test results of the PVEWIG without battery is presented, which demonstrates the ruggedness and the reliability of The hardware results the system. substantiates that the proposed control scheme is capable of providing a regulated output voltage to the load under all kinds of disturbances including variation in irradiation, temperature, wind speed, load as well as unbalance in load, for a battery less mode of PVEWIG system. The results further signify that the PVEWIG system with the proposed control scheme is an attractive solution for isolated off-grid applications where utility grid is not available

REFERENCES

[1] O. Honorati, G. L. Bianco, F. Mezzetti, and L. Solero, "Power electronic interface for combined wind/PV isolated generating system," in Proc. European UnionWind Energy Conf., Goteborg, Sweden, 1996, pp. 321–324.

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

- B. S. Borowy and Z. M. Salameh. [8] [2] alone wind energy conversion system with Wind Power Conversion 73–78. Available: DOI: 10.1109/60.577283.
- S. Kim, C. Kim, J. Song, G. Yu, and Y. [3] Jung, "Load sharing operation of a 14 kW photovoltaic/wind hybrid power system," in Proc. 26th IEEE Photovoltaic Specialists Conf., 1997, pp. 1325–1328.
- [4] K. Kurosumi et al., "A hybrid system composed of a wind power and a photovoltaic system at NTT kume-jima radio relay station," in Proc.20th Int. Telecommun. Energy Conf., 1998, pp. 785–789.
- [5] N.A Orlando, M. Liserre. R.A.A. Mastromauro.A. (2013, July). Survey Control Issues in PMSG-Based Small Wind-Turbine Systems. IEEE Transactions on Industrial Informatics.[On line]. 9(3), pp. 211 – 1221. Available: DOI: 10.1109/TII.2013.2272888.
- H.Shariatpanah, R. Fadaeinedjad, M. Rashidinejad. (2013, Sept.). A New Model for PMSG-Based Wind Turbine with Yaw Control.IEEE **Transactions** on Energy Conversion.[On line]. 8(4), pp 929-937. Available: DOI: 10.1109/TEC.2013.2281814
- [7] Md.E.Haque, M. Negnevitsky, K.M. Muttaqi.(2010, Nov.) A Novel Control Strategy for a Variable-Speed Wind Turbine with a Permanent-Magnet Synchronous Generator. **IEEE Transactions** Industrial Applications.[On line1.46(1). pp.331-339. Available: DOI: 10.1109/TIA.2009.2036550

- M. Kuschke and K. Strunz. (2014, Mar.). (1997, Mar.). Dynamic response of a stand- Energy-Efficient Dynamic Drive Control for with battery energy storage to a wind gust. IEEE Modeling and Application of TransferFunction Trans. Energy Conversion. [On line]. 12(1), pp. Analysis. IEEE Journal of Emerging and Selected Topics in Power Electronics. [On 35-46. Available: line]2(1), pp. 10.1109/JESTPE.2013.2293632
 - [9] S.Li, T.A. Haskew, R.P.Swatloski, W.Gathings. (2012, May). Optimal and Direct-Current Vector Control of Direct-Driven PMSG Wind Turbines.IEEE Trans on Power Electronics.2.[On line].7(5) pp.2325-2337. Available: DOI: 10.1109/TPEL.2011.2174254
 - M. [10] Fatu, F. Blaabjerg, F.; I.Boldea.(2014, July) Grid to Standalone Transition Motion-Sensorless Dual-Inverter Control of PMSG with Asymmetrical Grid Voltage Sags and Harmonics Filtering. IEEE Trans on Power Electronics.[On line].29(7), 3463-3472. Available: DOI: pp. 10.1109/TPEL.2013.2279883
 - [11] C. Grantham, D. Sutanto, and B. Mismail, "Steady-state and transient analysis of self-excited induction generators," Proc. Inst. Elec. Eng. B, vol. 136, no. 2, pp. 61–68, 1989.
 - [12] R. Leidhold, G. Garcia, and M. I. Valla.(2002, Feb.). Field-oriented controlled induction generator with loss minimization. IEEE Trans.on Ind. Electron.[On line]. 49(1), 147-155. Available: DOI:10.1109/41.982258
 - [13] S. Arul Daniel and N. AmmasaiGounden.(2004.June). Α Novel Hybrid Isolated Generating System Based on

A peer reviewed international journal

www.ijarst.in

ISSN: 2457-0362

PV Fed Inverter-Assisted Wind-Driven Induction Generators.IEEE Transactions on Energy Conversion.[On line].19(2),pp.412-422.Available:DOI:

10.1109/TEC.2004.827031

[14] M. Arutchelvi and S. Arul Daniel.(2006, July).Voltage control of autonomous hybrid generation scheme based on PV array and wind-driven induction generators. Electric power components and systems,[online]34(7), pp.759-773. Available:DOI: 10.1080/15325000500488594

[15] M. J. Hossain, Hemanshu Roy Pota, M. Apel Mahmud, Mohammad Aldeen. (2015,July). Robust Control for Power Sharing in Microgrids With Low-Inertia Wind and PV Generators. IEEE Trans on Sustainable energy,[online].6(3), pp.1067-77. Available:DOI: 10.1109/TSTE.2014.2317801

[16] [16] [16] G.Rupesh, Wandhare, Vivek Agarwal (2015, July)
. Novel intrgration of a PV-Wind energy system with Enhanced Efficiency. IEEE Trans. on Power Electronics. [online]. 30(7) pp. 3638
- 3649 Available: DOI: 10.1109/TPEL.2014.2345766

[17] Balogun, O. Ojo, and F. Okafor. (2013,Dec.).Decoupled Direct Control of Natural and Power Variables of Doubly Fed Induction Generator for Extended Wind Speed Range Using Feedback Linearization.IEEE Journal of Emerging and Selected Topics in Power Electronics. [online].1(4) pp. 226-237. Available:DOI:

10.1109/JESTPE.2013.2283149

Mr. M. Purushotham is currently working as Associate Professor & HOD in EEE Department, SHREE Institute of Technical Education, published several papers in National & International Journals in the area of Power Electronics & Electrical Drives, Tirupati, Andhra Pradesh, India.

Mrs. Ravilla Munikeerthi is pursuing Master of Technology in Power Electronics, EEE Department, SHREE Institute of Technical Education, Tirupati, and Andhra Pradesh, India.