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ABSTRACT 

Electrification of transportation systems is increasing; city buses raise enormous potential. Deep 

understanding of real-world driving data is essential for vehicle design and fleet operation. 

Various technological aspects must be considered to run alternative powertrains efficiently. 

Uncertainty about energy demand results in conservative design which implies inefficiency and 

high costs. Both industry and academia miss analytical solutions to solve this problem due to 

complexity and interrelation of parameters. Precise energy demand prediction enables significant 

cost reduction by optimized operations. This paper aims at increased transparency of battery 

electric buses’ (BEB) energy economy. We introduce novel sets of explanatory variables to 

characterize speed profiles, which we utilize in powerful machine learning methods. We develop 

and comprehensively assess 5 different algorithms regarding prediction accuracy, robustness, 

and overall applicability. Achieving a prediction accuracy of more than 94%, our models 

performed excellently in combination with the sophisticated selection of features. The presented 

methodology bears enormous potential for manufacturers, fleet operators and communities to 

transform mobility and thus pave the way for sustainable, public transportation. 

Keywords:  Battery Electric Buses, Energy demand prediction, Feature extraction, Machine 

learning, Meta modeling

I  INTRODUCTION 

Traffic causes approximately 25% of 

greenhouse gas (GHG) emissions in Europe, 

and this percentage is increasing [1]. 

Therefore, widespread electrification of the 

mobility sector is one of the most positive 

actions that can be taken in relation to climate 

change and sustainability [2], [3]. It seems 

clear that electric buses, because of their low 

pollutant emissions, are set to play a key role 

in the public urban transportation of the future. 

Although the initial investment in 

electrification  may be high - e.g. purchase 

costs of BEBs are up to twice as high as those 

of Diesel buses [4] - it is quickly amortized 

because the inherent efficiency of electric 

vehicles far exceeds that of internal 

combustion engine vehicles (up to 77% [5]) 

and thus operational respectively life cycle 

costs are significantly lower [6]. In addition, 

electrification of the power train brings many 
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other advantages, such as a reduced noise level 

or pollution [7]–[10]. On the downside, the 

battery charging time of an electric bus is 

significantly longer than the refueling time of a 

diesel bus, while the opposite is true for the 

range [11]. Ultimately, widespread 

electrification of the mobility sector is one of 

the most positive actions that can be taken in 

terms of climate change and sustainability, but 

more research is needed to ensure efficient 

operation, as it also poses significant 

challenges.   The starting point for this study 

was a problem proposed by Seville’s public 

bus operator. In short, they wanted to replace 

their diesel fleet with all-electric vehicles, but 

first they had to size the vehicles’ batteries and 

determine the best charging locations around 

the city. In practice, this means using 

computers to predict consumption on each 

route [12]. Unfortunately, this can currently 

only be done with complex physical models 

that require long simulation times, or with  

data-driven models that are less 

computationally intensive once trained, but 

require numerous driving, mechanical, and 

road measurements as inputs (see Section I-A). 

This is where the present research comes in. In 

this paper we use the bus operator’s database 

and a physics-based model of soon-to be- 

deployed electric buses to develop data-driven 

models that predict the energy requirements of 

the vehicles. Amongst others, what 

distinguishes our contribution from previous 

data driven approaches is the small number of 

physical variables involved: we show that, to 

accurately predict the consumption on a route 

using machine learning, we only need to know 

the instantaneous speed of the vehicle and the 

number of passengers on the bus. Specifically, 

our approach consists of three steps: 

  1) We calculate the energy consumed by the 

bus on each route using a physics-based 

model, validated by the vehicle manufacturer, 

that uses speed and mass as inputs, including 

the bus’s own weight and the weight of its 

payload. Both variables are taken from the 

operator’s database. 

 2) We extract a comprehensive set of time and 

frequency features from the speed signal. 

 3) We train machine learning regression 

models to predict the energy consumption 

from bus payload mass and the above set of 

features, and identify those with the best 

predictive value. Interestingly, the feature that 

turns out to be the most relevant, i.e., the 

spectral entropy of velocity, has so far gone 

unnoticed in this field of research. 

          Ultimately, our results are useful for 

planning the transition from a conventional to 

a green bus fleet, and even for adding new 

functionalities that will be useful to planners: 

for example, the algorithms may be run on the 

battery management systems to provide an 

alternative way of monitoring the current state 

of charge of the batteries.  

                The paper is structured as follows. 

First, we identify the challenges in this field 

and review the state of the art in section I. 

Secondly, our material, methodology and 

methods are explained in Section II. 

Experimental results are presented and 

discussed in section III. Finally, section IV 

concludes our paper and shows possible future 

developments. 
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Fig 1: System Architecture 

II  RELATED WORK 

Electrification of Public Transport 

Electrification of transportation in cities is a 

matter of focus for a large number of studies. 

City buses are one of the essential parts in this 

process that help in lowering carbon emissions 

and increasing the mobility in urban areas. As 

more people become interested in using battery 

electric buses, there has been increased 

attention on analyzing their energy usage and 

developing ways to operate them as efficiently 

as possible. Many studies have underscored 

the need to develop precise models for 

predicting energy demand since uncertainties 

in energy consumption result in inefficient 

system designs and higher operational costs. 

Energy Demand Prediction Models 

Most of the early researches on BEB energy 

demand prediction were based on simple 

models that used route information, vehicle 

characteristics, and historical data. Liu et al. 

(2019) proposed a prediction model for energy 

consumption, using historical driving data and 

characteristics of routes. Though it provided 

useful insights, the approach did not take into 

account real-time variations like traffic 

conditions and driver behavior. In time, 

advanced models, including machine learning 

approaches, have been developed to overcome 

such shortcomings. 

 

Machine Learning Models for Energy 

Prediction 

The central idea behind the current 

development of more accurate models for 

energy prediction is techniques in machine 

learning. Zhang et al. (2021) employed support 

vector machines (SVM) and achieved 

promising results in controlled conditions for 

energy consumption prediction but faced 

issues in terms of scalability and adaptability 

under dynamic real-world conditions. 

Similarly, Lee et al. (2020) applied deep 

learning methods in controlled settings to 

accurately predict energy demand but showed 

poor robustness in terms of predictability in 

the urban environment. These studies reflect 

the great potential of machine learning, but at 

the same time, show a need for more robust 

and adaptive models. 

Feature Selection and Speed Profiles 

Selecting the appropriate features is an 

important aspect of improving the accuracy of 

energy prediction. For instance, research such 

as Ríos et al. (2020) has demonstrated that 

including various explanatory variables such 

as speed profiles, weather conditions, and 

vehicle load in the model can improve the 

performance of the prediction model 

considerably. Such variables give a better 
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understanding of the factors that are affecting 

energy consumption and will result in more 

accurate energy demand predictions. 

Current Gaps and Challenges 

Despite the progress in energy demand 

prediction for BEBs, there are still large gaps 

in providing practical, scalable solutions for 

fleet operations. Most of the existing models 

either are too simplistic or lack robustness to 

handle the dynamic nature of urban 

environments. The lack of effective integration 

of real-time data and accurate feature selection 

continues to limit the applicability of these 

models in real-world settings. 

Contribution of Current Work 

The current study aims to fill these gaps by 

introducing novel sets of explanatory variables 

to characterize speed profiles and assessing 

five different machine learning algorithms. 

The proposed methodology achieves a 

prediction accuracy of over 94%, offering 

significant improvements in prediction 

robustness and scalability. This approach 

presents a promising solution for 

manufacturers, fleet operators, and 

municipalities, helping optimize BEB 

operations and contribute to sustainable public 

transportation. 

The findings from this study offer a 

comprehensive, data-driven approach to 

energy demand prediction, paving the way for 

more efficient, cost-effective, and 

environmentally friendly public transportation 

systems. 

III IMPLEMENTATION 

The Service Provider module is implemented 

for authorized users to perform a variety of key 

operations related to the prediction system of 

the energy economy. After logging in using 

their valid username and password, these 

service providers get the capability to browse 

datasets, to use training and testing data sets 

and to view the accuracy of a trained model. 

They can view the accuracy of the models in 

bar charts and also review detailed accuracy 

results. In addition, the service provider can 

view the predicted energy economy types, 

including the energy economy type ratio, and 

download the predicted datasets for further 

analysis. The other feature of this module is 

that the service provider can view the energy 

economy type ratio results, which help gain 

deeper insights into energy consumption 

patterns. In addition, the service provider can 

view all the registered remote users and 

monitor their activities in the system. 

The View and Authorize Users module is 

managed by the Admin, who has full control 

over user management. The admin can view a 

list of all registered users and access their 

details, such as their username, email, and 

physical address. The admin also gives 

permission to users, making sure that only the 

people with valid credentials are allowed to 

log in and use the functionalities of the system. 

This module is vital in maintaining the security 

and integrity of the system since it ensures that 

only authorized people are accessing the 

system. 

In the Remote User module, a user first needs 

to register, giving their personal details, 

including their name, email, and address. Once 

the registration procedure is done, users can 

log in using their authorized username and 

password. After successful login operation, 

they can predict the energy economy type and 
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view their profile. The remote user module 

keeps the system's prediction accessibility to 

only registered and approved individuals, thus 

adding to the comprehensive security and 

functionality of the system. 

Together, these modules form a coherent 

system that supports the economic and 

efficient use of management tools for energy 

economy prediction whilst maintaining user 

authorization and security. 

IV ALGORITHM 

Decision tree classifiers 

Decision tree classifiers are used successfully 

in many diverse areas. Their most important 

feature is the capability of capturing 

descriptive decision making knowledge from 

the supplied data. Decision tree can be 

generated from training sets. The procedure for 

such generation based on the set of objects (S), 

each belonging to one of the classes C1, C2, 

…, Ck is as follows: 

Step 1. If all the objects in S belong to the 

same class, for example Ci, the decision tree 

for S consists of a  leaf labeled with this class 

Step 2. Otherwise, let T be some test with 

possible outcomes O1, O2,…, On. Each object 
in S has one outcome for T so the test 

partitions S into subsets S1, S2,… Sn where 
each object in Si has outcome Oi for T. T 

becomes the root of the decision tree and for 

each outcome Oi we build a subsidiary 

decision tree by invoking the same procedure 

recursively on the set Si. 

Gradient boosting  

Gradient boosting is a machine 

learning technique used 

in regression and classification tasks, among 

others. It gives a prediction model in the form 

of an ensemble of weak prediction models, 

which are typically decision trees.[1][2] When 

a decision tree is the weak learner, the 

resulting algorithm is called gradient-boosted 

trees; it usually outperforms random forest.A 

gradient-boosted trees model is built in a 

stage-wise fashion as in 

other boosting methods, but it generalizes the 

other methods by allowing optimization of an 

arbitrary differentiable loss function. 

K-Nearest Neighbors (KNN) 

➢ Simple, but a very powerful classification 

algorithm 

➢ Classifies based on a similarity measure 

➢ Non-parametric  

➢ Lazy learning 

➢ Does not “learn” until the test example is 

given 

➢ Whenever we have a new data to classify, 

we find its K-nearest neighbors from the 

training data 

Logistic regression Classifiers 

Logistic regression analysis studies the 

association between a categorical dependent 

variable and a set of independent (explanatory) 

variables. The name logistic regression is used 

when the dependent variable has only two 

values, such as 0 and 1 or Yes and No. The 

name multinomial logistic regression is usually 

reserved for the case when the dependent 

variable has three or more unique values, such 

as Married, Single, Divorced, or Widowed. 

Although the type of data used for the 

dependent variable is different from that of 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Regression_(machine_learning)
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Gradient_boosting#cite_note-:1-1
https://en.wikipedia.org/wiki/Gradient_boosting#cite_note-hastie-2
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Boosting_(machine_learning)
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Loss_function
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multiple regression, the practical use of the 

procedure is similar. 

Logistic regression competes with discriminant 

analysis as a method for analyzing categorical-

response variables. Many statisticians feel that 

logistic regression is more versatile and better 

suited for modeling most situations than is 

discriminant analysis. This is because logistic 

regression does not assume that the 

independent variables are normally distributed, 

as discriminant analysis does. 

This program computes binary logistic 

regression and multinomial logistic regression 

on both numeric and categorical independent 

variables. It reports on the regression equation 

as well as the goodness of fit, odds ratios, 

confidence limits, likelihood, and deviance. It 

performs a comprehensive residual analysis 

including diagnostic residual reports and plots. 

It can perform an independent variable subset 

selection search, looking for the best 

regression model with the fewest independent 

variables. It provides confidence intervals on 

predicted values and provides ROC curves to 

help determine the best cutoff point for 

classification. It allows you to validate your 

results by automatically classifying rows that 

are not used during the analysis. 

Naïve Bayes 

The naive bayes approach is a supervised 

learning method which is based on a simplistic 

hypothesis: it assumes that the presence (or 

absence) of a particular feature of a class is 

unrelated to the presence (or absence) of any 

other feature . 

Yet, despite this, it appears robust and 

efficient. Its performance is comparable to 

other supervised learning techniques. Various 

reasons have been advanced in the literature. 

In this tutorial, we highlight an explanation 

based on the representation bias. The naive 

bayes classifier is a linear classifier, as well as 

linear discriminant analysis, logistic regression 

or linear SVM (support vector machine). The 

difference lies on the method of estimating the 

parameters of the classifier (the learning 

bias).While the Naive Bayes classifier is 

widely used in the research world, it is not 

widespread among practitioners which want to 

obtain usable results. On the one hand, the 

researchers found especially it is very easy to 

program and implement it, its parameters are 

easy to estimate, learning is very fast even on 

very large databases, its accuracy is reasonably 

good in comparison to the other approaches. 

On the other hand, the final users do not obtain 

a model easy to interpret and deploy, they does 

not understand the interest of such a technique. 

Thus, we introduce in a new presentation of 

the results of the learning process. The 

classifier is easier to understand, and its 

deployment is also made easier. In the first 

part of this tutorial, we present some 

theoretical aspects of the naive bayes 

classifier. Then, we implement the approach 

on a dataset with Tanagra. We compare the 

obtained results (the parameters of the model) 

to those obtained with other linear approaches 

such as the logistic regression, the linear 

discriminant analysis and the linear SVM. We 

note that the results are highly consistent. This 

largely explains the good performance of the 

method in comparison to others. In the second 

part, we use various tools on the same dataset 

(Weka 3.6.0, R 2.9.2, Knime 2.1.1, Orange 

2.0b and RapidMiner 4.6.0). We try above all 

to understand the obtained results. 
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Random Forest  

Random forests or random decision forests are 

an ensemble learning method for classification, 

regression and other tasks that operates by 

constructing a multitude of decision trees at 

training time. For classification tasks, the 

output of the random forest is the class 

selected by most trees. For regression tasks, 

the mean or average prediction of the 

individual trees is returned. Random decision 

forests correct for decision trees' habit of 

overfitting to their training set. Random forests 

generally outperform decision trees, but their 

accuracy is lower than gradient boosted trees. 

However, data characteristics can affect their 

performance. 

The first algorithm for random decision forests 

was created in 1995 by Tin Kam Ho[1] using 

the random subspace method, which, in Ho's 

formulation, is a way to implement the 

"stochastic discrimination" approach to 

classification proposed by Eugene Kleinberg.  

An extension of the algorithm was developed 

by Leo Breiman and Adele Cutler, who 

registered "Random Forests" as a trademark in 

2006 (as of 2019, owned by Minitab, Inc.).The 

extension combines Breiman's "bagging" idea 

and random selection of features, introduced 

first by Ho[1] and later independently by Amit 

and Geman[13] in order to construct a 

collection of decision trees with controlled 

variance. 

Random forests are frequently used as 

"blackbox" models in businesses, as they 

generate reasonable predictions across a wide 

range of data while requiring little 

configuration. 

 

SVM  

In classification tasks a discriminant machine 

learning technique aims at finding, based on an 

independent and identically distributed (iid) 

training dataset, a discriminant function that 

can correctly predict labels for newly acquired 

instances. Unlike generative machine learning 

approaches, which require computations of 

conditional probability distributions, a 

discriminant classification function takes a 

data point x and assigns it to one of the 

different classes that are a part of the 

classification task. Less powerful than 

generative approaches, which are mostly used 

when prediction involves outlier detection, 

discriminant approaches require fewer 

computational resources and less training data, 

especially for a multidimensional feature space 

and when only posterior probabilities are 

needed. From a geometric perspective, 

learning a classifier is equivalent to finding the 

equation for a multidimensional surface that 

best separates the different classes in the 

feature space. 

SVM is a discriminant technique, and, because 

it solves the convex optimization problem 

analytically, it always returns the same optimal 

hyperplane parameter—in contrast to genetic 

algorithms (GAs) or perceptrons, both of 

which are widely used for classification in 

machine learning. For perceptrons, solutions  

are highly dependent on the initialization and 

termination criteria. For a specific kernel that 

transforms the data from the input space to the 

feature space, training returns uniquely defined 

SVM model parameters for a given training 

set, whereas the perceptron and GA classifier 

models are different each time training is 

initialized. The aim of GAs and perceptrons is 
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only to minimize error during training, which 

will translate into several hyperplanes’ 
meeting this requirement. 

RESULTS 

 

Fig:1:User Login 

 

Fig:2:Remote User 

 

Fig:3:Accuracy Results 

 

Fig:4:Algorithm Graph 

 

Fig:5:Pie Chart Algorithm Comparision 

 

 

Fig:6:Pie Chart Prediction Comparision  

CONCLUSION 

 This paper offers a data-driven approach 

that uses both simulated and real-world data 

for planning problems and electrification of 

public transport. The results confirm that the 

energetic relevant features obtained by feature 

selection and regression analysis perfectly 
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characterize the energy consumption of BEBs 

under different real driving conditions. It is a 

practical approach for fleet operators who want 

to retrofit or replace their conventional buses 

with electric vehicles and build the 

corresponding infrastructure. We emphasize in 

this context the so-called ‘‘Vehicle Routing 

Problem’’, e.g. mentioned by [59], [60]. The 

energy demand on each route needs to be 

known a priori to correctly size the batteries, 

decide on the optimal bus operating modes 

(all-electric, hybrid electric, et cetera), and 

select the best charging strategies (i.e. 

opportunity vs. conventional charging). The 

worst-case scenario – the most energy-

intensive route – is the limiting factor. 

Ultimately, this knowledge is essential for fleet 

operators to identify critical operational limits 

in advance, avoid potential showstoppers, and 

gain confidence in new technologies. Thus, to 

achieve reliable and affordable service on all 

routes in the end .  

              As our main contribution, the paper 

presents a novel selection of explanatory 

variables that combine time and frequency 

characteristics of the speed waveform. To 

extract these features, the route is divided into 

micro trips. This ‘segment-based’ prediction 

provides robustness against non stationarity. 

Starting with an initial set of 40 features, we 

have found a minimum number of 

characteristics with high predictive value. The 

most relevant of these features, i.e., the 

spectral entropy of velocity profiles, has so far 

even gone unnoticed in this field. This result 

confirms our assumption that it is in the 

velocity waveform, whose temporal structure 

is well captured by the spectral entropy, where 

the most essential information actually resides. 

             In future research, we plan to extend 

this approach to other scenarios, as the 

challenge is to find out how this methodology 

performs under different circumstances. The 

proposed approach is of particular interest to 

companies in the transportation and logistics 

sector. In particular, it is of interest to fleet 

operators that rely on heavy-duty trucks and 

often struggle to electrify their fleets because 

they lack a solid framework for making the 

right choices for the right vehicles. It could 

even be applied to other classes of vehicles or 

transport systems, such as passenger vehicles 

or rail transport. On the other hand, 

meteorological characteristics, road type and 

operational features for instance could be 

investigated more deeply. This is why we plan 

to investigate seasonally and locally changing 

conditions and recommend careful feature 

selection according to each use case. Finally, 

predictive analytics of additional target 

variables, such as the peak power of the 

system or the electric current demands on the 

batteries are of high interest and could be 

investigated by the presented methodology. 
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