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ABSTRACT 

 

In a TCP/IP network, a key to ensure efficient 

and fair sharing of network resources among its 

users is the TCP congestion control (CC) 

scheme. Previously, the design of TCP CC 

schemes is based on hard-wiring of predefined 

actions to specific feedback signals from the 

network. However, as networks become more 

complex and dynamic, it becomes harder to 

design the optimal feedback- action mapping. 

Recently, learning-based TCP CC schemes have 

attracted much attention due to their strong 

capabilities to learn the actions from interacting 

with the network. In this paper, we design two 

learning-based TCP CC schemes for wired 

networks with under-buffered bottleneck links, a 

loss predictor (LP) based TCP CC (LP-TCP), and 

a reinforcement learning (RL) based TCP CC 

(RL-TCP). We implement both LP-TCP and RL-

TCP in NS2. Compared to the existing NewReno 

and Q-learning based TCP, LP- TCP and RL-TCP 

both achieve a better tradeoff between throughput 

and delay, under various simulated network 

scenarios. 
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1.INTRODUCTION 

 

Designing TCP congestion control (CC) schemes 

to ensure efficient and fair use of the network 

resources has been a well-motivated and 

intensely studied topic for nearly three decades, 

resulting in a range of influential algorithms that 

are either entirely host-to-host [3–6, 9, 16, 28, 31, 

32], or with in-net support [15, 27]. We focus on 
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on servers or to redistribute to lists, requires prior 

specific permission and/or a host-to-host CC 

schemes due to their flexibility and independence 

from the network. 

Many of the existing host-to-host CC schemes 

target networks of high-bandwidth and low 

congestive packet loss rate (e.g., [6, 28]). To 

support high bandwidth, a rule of thumb is to 

have the buffer size at each link linearly scale 

with the link-rate, which causes negative side-

effects such as “bufferbloat” (i.e., high latency as a 

result of excessive buffering of packets) and 

high hardware cost. Thus reducing buffer size is 

desirable. It is also shown to have negligible 

change in throughput when a large number of 

TCP connections coexist in a single backbone 

link [1]. However, when the number of coexisting 

TCP connections is small, an under- buffered (i.e., 

buffer size smaller than that suggested by the rule 

of thumb) bottleneck link can often be under-

utilized by existing TCP flows, which reduce their 

congestion windows (cwnd) frequently upon 

packet losses. 

Therefore, the first question we explore in this 

paper is: Can a TCP CC scheme learn to predict 

congestive packet losses? Heuris- tics based on the 

measured throughput or round-trip time (RTT) 

of a TCP flow [3, 11, 29] perform poorly in loss 

prediction [2]. A carefully-built loss predictor 

model [23] shows higher predic- tion accuracy, 

but requires sophisticated human design. Recently, 

capability of machines to learn and represent 

complex models is re-discovered and exploited to 
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solve various problems in computer networks 

[17–20, 25]. Thus, we develop a loss predictor 

(LP) us- ing supervised learning, and 

incorporate it into the TCP CC to predict and 

reduce congestive packet losses. With tuning of a 

deci- sion threshold th, the loss predictor based 

TCP (LP-TCP) achieves a desired tradeoff 

between throughput and delay. Compared to 

NewReno [5], a single “always-on” LP-TCP 

connection shows 29% increase in throughput 

with similar RTT, in an extremely under- 

buffered bottleneck link (See Table 5, L = 5). 

Also, when four LP-TCP connections coexist in 

an under-buffered bottleneck link, their average 

throughput increases by 4 5% with slightly 

increased RTT (See Tables 6 and 7). 

However, LP-TCP works better when the 

network model remains more or less fixed. When 

the topology and parameters of a network change, 

a new LP needs to be learned. Thus, we explore 

the next question: Can a TCP CC scheme adaptively 

learn to act in a dynamic network environment, 

given an objective? We then develop a rein- 

forcement learning (RL) based TCP CC (RL-TCP), 

with an objective to improve a function of 

throughput, delay, and packet loss rate. RL- TCP 

exhibits an excellent tradeoff between throughput 

and delay. Compared to NewReno and a Q-

learning based TCP (Q-TCP) [16], a single 

“always-on” RL-TCP achieves 7 8% decrease in 

RTT and at least 9% increase in throughput, in an 

under-buffered bottleneck link (See Table 5, L = 

50). When four RL-TCP connections coexist in an 

under-buffered bottleneck link, their throughput 

increases by 

4 − 5% while maintaining similar RTT (See Tables 

6 and 7). 

The rest of the paper is organized as follows. 

Section 2 presents the related work. Section 3 

presents the architecture for the pro- posed 

learning-based TCP CC schemes, and introduces LP-

TCP and RL-TCP. Section 4 evaluates the 

performance of LP-TCP and RL- TCP and 

compares them to NewReno and Q-TCP on NS2. 

Section 5 concludes the paper. 

 

2 RELATED WORK 

 

Since the internet congestion collapse in 1986, 

congestion control for multiuser packet-switched 

networks has remained an active research field. 

Jacobson, in his seminal work TCP Tahoe [9] 

and Reno [10], introduced three core phases in a 

CC algorithm (i.e., slow start, congestion 

avoidance, and fast recovery), which become the 

foundation most TCP CC schemes build upon. 

Many TCP CC schemes look for better ways to 

adjust cwnd at congestion avoid- ance. For 

instance, Vegas [3] treats increasing RTT as a 

congestion signal and adjust cwnd to keep RTT in 

a desired range. Cubic [6] modulates its cwnd 

according to a cubic function. Compound [28] 

reacts to delay signals and packet loss events, 

and adopts a scal- able increasing rule on cwnd 

in response to changes in the RTTs. While having 

unique characteristics, the above mentioned TCP 

CC schemes share a similarity of hard-wiring of 

predefined operations on the cwnd in response to 

specific feedback signals. They do not learn and 

adapt from experience. 

Machine learning has been used to indirectly 

improve the per- formance of TCP CC schemes. 

For example, it has been used to classify 

congestive and contention loss [13], and to give a 

better estimation of the RTT [22]. It has also been 

applied to accurately forecast TCP throughput 

[21]. Recently, many machine learning based TCP 

CC schemes have been proposed. Remy [31] 

formalizes the multiuser CC problem as the 

POMDP and learns the optimum policy offline. It 

needs intense offline computation and the perfor- 

mance of RemyCCs depends on the accuracy of 

the network and traffic models. PCC [4] 

adaptively adjusts its sending rate based on 

continuously carried out “micro-experiments”, but 

it is rate-based and its performance depends on the 

accuracy of the clocking. The learnability of TCP 

CC is examined in [24], where RemyCCs are used 

to understand what imperfect knowledge about the 

target network would hurt the performance of 

TCP CC the most. 

In [16], a Q-learning based TCP (Q-TCP) was 

proposed that uses RL to design a TCP CC 

scheme. However, Q-TCP is designed mostly with 

a single TCP connection in mind.  

As we consider under- buffered networks with a 

small number of TCP connections, it is helpful to 

adopt more expressive features and redesign the 
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action space. We also propose a different credit 

assignment component which we believe better 

captures TCP dynamics. 

 

3 THE PROPOSED LEARNING BASED 

TCP CC SCHEMES 

 In this section, we explore ways to improve the 

performance of TCP CC schemes in wired 

networks with an under-buffered bottle neck 

link using machine intelligence. Specifically, we 

propose two learning-based TCP CC schemes, 

one based on supervised learning, and the other 

based on RL. The two learning-based TCP CC 

agents share a common architecture, shown in 

Fig. 1a. It contains three components: • A 

sensing engine, which processes signals from the 

network, combines them with variables in the 

TCP sender, and outputs an array representing 

the current state. It may also compute other 

quantities when required; • A learner, which 

consists of an online learning engine or a learned 

model. It takes in the current state, and outputs 

certain “prediction”; • An actuator, which acts 

(i.e., adjusts cwnd) based on the “prediction” 

from the learner. The sensing engine computes 

statistics that reflect how congestive the network 

may be. Such statistics may include the packet 

inter sending time, acknowledgment (ACK) 

inter- 

arrival time, and RTTs [31]. The learner serves as 

the “brain” of the TCP CC agent, learn ing the 

complex relationship between a certain state and 

possible actions, and informs the actuator to act 

accordingly. Proper design and training of the 

learner remain the key to a well-performing 

learning-based TCP CC scheme. Though 

unnecessary, our learning based TCP CC 

schemes are based on NewReno. This means that 

slow start, fast retransmit, and fast recovery of 

NewReno are still adopted. 3.1 LP-TCP Based on 

the architecture in Fig. 1a, we introduce our first 

learning based TCP CC named LP-TCP. The 

intuition is simple. Since NewReno reduces 

sending rate (by halving cwnd) each time a packet 

loss occurs, and under-utilizes the bottleneck 

bandwidth in an under buffered network, LP-

TCP predicts and reduces packet loss events, 

lowers the frequency of sending rate reduction, 

and strives for a better throughput. Therefore, the 

learner in Fig. 1a is a packet loss predictor (LP), 

which tells the actuator how likely a packet will be 

lost if sent. If the probability of loss is higher than 

a threshold, the actuator does not send the packet 

(i.e., reduces cwnd by one). Otherwise, the 

actuator sends the packet. The inputs of the 

sensing engine, the learner, and the actuator are as 

follows: • input to the sensing engine: Received 

ACKs; • input to the learner: cwnd size, the order 

of current packet in the cwnd, exponentially 

weighted moving average (EWMA), time series 

(TS), and minimum of ACK inter-arrival time, 

EWMA, TS, and minimum of packet inter-

sending time, TS and minimum of RTT, TS of 

ratios of ACK inter-arrival time, TS of ratios of 

packet inter-sending time, TS of ratios of RTTs 

(TS of a variable includes 8 recent samples of that 

variable); • input to the actuator: Estimated 

probability of loss of the current packet. To reflect 

how congestive the network is, the sensing engine 

outputs a length-55 feature array as the state, 

based on received ACKs and variables in the TCP 

sender. Now we illustrate the process of building 

the loss predictor (the learner) using a supervised 

learning technique, called random forests [7, 8]. 

3.1.1 Training the LP. The learner is a loss 

predictor in LP-TCP. It takes the state as input, 

and predicts the probability of a packet being lost 

due to congestion should the packet be sent. We 

collect training data to train the learner through 

NewReno simulations on NS2. Whenever a packet 

gets sent, we record the state right before the 

packet goes into transmission as a feature vector.  

 

 
a)
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Figure 1: (a) Architecture of the proposed machine 

learning based TCP CC schemes.  

We want to mention that for LP-TCP, the packet inter-

sending time (and thus the features that depend on it) is 

computed based on the packets the TCP sender is sending, 

instead of from the time-stamps in the received ACKs. If the 

packet is successfully delivered, this feature vector gets a 

corresponding label of 0; otherwise, the label is 1 (for loss). 

Since loss events are the minority events, we stop the 

collection when we have enough losses in the data. In this 

paper, the training data collection lasts 5000 seconds. A 

random forest model is then trained with this training set. For 

any feature vector representing a certain state, the model then 

outputs the estimated probability of loss should a packet get 

sent, which is the mean prediction of the decision trees in the 

forest. 

Inferencing packet loss. After training, the sensing engine, the 

random forests LP, and the actuator work together as LP-

TCP. During congestion avoidance, when a new ACK is 

received by the TCP sender, the cwnd expands by 1 cwnd, 

and the sensing engine updates the state. When the sender 

is about to send a packet, the state is computed again. The 

LP then takes in the state vector, and outputs a probability of 

loss of that packet. If the probability of loss is lower than a 

pre-determined threshold th, the actuator sends the packet. 

RL-TCP 

A problem with the supervised learning based LP-TCP is that, 

when the topology and parameters of a network change, a 

new LP needs to be re-learned. Ideally, we would like the 

TCP CC scheme to con- tinuously learn and adapt in a 

dynamic network environment, given an objective. This 

inspires us to formulate the TCP CC problem as an RL 

problem [26], where an agent with no prior knowledge learns 

to act by acting and receiving a reward (positive or negative) 

from the environment, with the goal of maximizing some 

kind of cumulative rewards. Doing so leads to our RL-based 

TCP CC (RL- TCP). Compared to Q-TCP [16], RL-TCP tailors 

the design of states and action space towards networks with 

under-buffered bottleneck links. More importantly, RL-TCP 

treats the temporal credit assign- ment of reward according to 

TCP dynamics. The inputs of the three components in Fig. 1a 

are as follows: 

input to the learner: the state (i.e., EWMA of the ACK inter- 

arrival time, EWMA of the packet inter-sending time, the 

ratio of current RTT and the minimum RTT, the slow start 

threshold, and cwnd size), and reward r from the network; 

input to the actuator: a value function of current state and 

actions, indicating how “good” each action is, at the current 

state 

 
 

4 EXPERIMENTAL RESULTS 

 
• To run project double click on ‘run.bat’ file to 

get below screen 
 

 

• In above screen click on ‘Upload Network 

Dataset’ button to upload dataset and get 

below output 
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• In above screen selecting and uploading 

dataset and then click on ‘Open’ button to 

load dataset and get below output 
 

 

• In above screen dataset loaded and now 

click on ‘Preprocess Dataset’ button to 

remove missing values and get below output 
 

 
 

• In above screen Preprocessing completed and 

dataset contains 1000 records and now click 

on ‘Run RL-TCP Algorithm’ button to train 

RL-TCP and get below output 

 

 

 

• In above graph x-axis represents Simulation 

Time and y-axis represents CWND window 

size and for each packet sending we got 

learning or prediction rate for existing New-

Reno (blue colour line) and propose RL-TCP 

(green colour line) and in above graph we can 

see RL-TCP got more packet prediction 

compare to existing New-Reno. 
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• In above screen RL-TCP loss is 0.015 and its 

throughput is 0.98% as it is processing more 

packets due to less time in prediction so its 

throughput will be high and now click on  
 

 
• In above screen we can see LP-TCP (green 

line) is also better than existing New-Reno to 

handle congestion and now close above graph 

to get below screen 

 

 

 

 

 

 

• In above screen with RL-TCP we got throughput 

as 0.98 and with LP-TCP we got 
0.97 so RL-TCP is better than all other algorithms and now 

click on ‘Loss & Throughput Graph’ button to get below outpu 

•      In above graph x-axis represents algorithm 

names and y-axis represents LOSS and throughout 

where orange bar is for RL-TCP and blue bar is 

for LP-TCP and in both algorithms RL-TCP got 

high throughput and less LOSS. So we can say 

with RL-TCP we can improve congestion to get 

less loss and high throughput. 
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