

OPTIMIZING TCP CONGESTION CONTROL THROUGH MACHINE LEARNING

K. V.RAJESH 1, R. JYOSTHANA 2, SK. PARVEEN 3, SK. RIZWANA4, SK. SEEMA5

1Assistant Professor,Department Of CSE,Malla Reddy Engineering College For Women,Hyderabad,Telangana,India

2,3,4,5 UG Scholar,Department Of CSE,Malla Reddy Engineering College For Women,Hyderabad,Telangana,India

ABSTRACT

In a TCP/IP network, a key to ensure efficient

and fair sharing of network resources among its

users is the TCP congestion control (CC)

scheme. Previously, the design of TCP CC

schemes is based on hard-wiring of predefined

actions to specific feedback signals from the

network. However, as networks become more

complex and dynamic, it becomes harder to

design the optimal feedback- action mapping.

Recently, learning-based TCP CC schemes have

attracted much attention due to their strong

capabilities to learn the actions from interacting

with the network. In this paper, we design two

learning-based TCP CC schemes for wired

networks with under-buffered bottleneck links, a

loss predictor (LP) based TCP CC (LP-TCP), and

a reinforcement learning (RL) based TCP CC

(RL-TCP). We implement both LP-TCP and RL-

TCP in NS2. Compared to the existing NewReno

and Q-learning based TCP, LP- TCP and RL-TCP

both achieve a better tradeoff between throughput

and delay, under various simulated network

scenarios.

KEYWORDS

TCP congestion control, packet loss prediction,

reinforcement learn- ing, machine learning

1.INTRODUCTION

Designing TCP congestion control (CC) schemes

to ensure efficient and fair use of the network

resources has been a well-motivated and

intensely studied topic for nearly three decades,

resulting in a range of influential algorithms that

are either entirely host-to-host [3–6, 9, 16, 28, 31,

32], or with in-net support [15, 27]. We focus on

Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not

made or distributed for profit or commercial

advantage and that copies bear this notice and the

full citation on the first page. Copyrights for

components of this work owned by others than

ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post

on servers or to redistribute to lists, requires prior

specific permission and/or a host-to-host CC

schemes due to their flexibility and independence

from the network.

Many of the existing host-to-host CC schemes

target networks of high-bandwidth and low

congestive packet loss rate (e.g., [6, 28]). To

support high bandwidth, a rule of thumb is to

have the buffer size at each link linearly scale

with the link-rate, which causes negative side-

effects such as “bufferbloat” (i.e., high latency as a

result of excessive buffering of packets) and

high hardware cost. Thus reducing buffer size is

desirable. It is also shown to have negligible

change in throughput when a large number of

TCP connections coexist in a single backbone

link [1]. However, when the number of coexisting

TCP connections is small, an under- buffered (i.e.,

buffer size smaller than that suggested by the rule

of thumb) bottleneck link can often be under-

utilized by existing TCP flows, which reduce their

congestion windows (cwnd) frequently upon

packet losses.

Therefore, the first question we explore in this

paper is: Can a TCP CC scheme learn to predict

congestive packet losses? Heuris- tics based on the

measured throughput or round-trip time (RTT)

of a TCP flow [3, 11, 29] perform poorly in loss

prediction [2]. A carefully-built loss predictor

model [23] shows higher predic- tion accuracy,

but requires sophisticated human design. Recently,

capability of machines to learn and represent

complex models is re-discovered and exploited to

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 869

−

solve various problems in computer networks

[17–20, 25]. Thus, we develop a loss predictor

(LP) us- ing supervised learning, and

incorporate it into the TCP CC to predict and

reduce congestive packet losses. With tuning of a

deci- sion threshold th, the loss predictor based

TCP (LP-TCP) achieves a desired tradeoff

between throughput and delay. Compared to

NewReno [5], a single “always-on” LP-TCP

connection shows 29% increase in throughput

with similar RTT, in an extremely under-

buffered bottleneck link (See Table 5, L = 5).

Also, when four LP-TCP connections coexist in

an under-buffered bottleneck link, their average

throughput increases by 4 5% with slightly

increased RTT (See Tables 6 and 7).

However, LP-TCP works better when the

network model remains more or less fixed. When

the topology and parameters of a network change,

a new LP needs to be learned. Thus, we explore

the next question: Can a TCP CC scheme adaptively

learn to act in a dynamic network environment,

given an objective? We then develop a rein-

forcement learning (RL) based TCP CC (RL-TCP),

with an objective to improve a function of

throughput, delay, and packet loss rate. RL- TCP

exhibits an excellent tradeoff between throughput

and delay. Compared to NewReno and a Q-

learning based TCP (Q-TCP) [16], a single

“always-on” RL-TCP achieves 7 8% decrease in

RTT and at least 9% increase in throughput, in an

under-buffered bottleneck link (See Table 5, L =

50). When four RL-TCP connections coexist in an

under-buffered bottleneck link, their throughput

increases by

4 − 5% while maintaining similar RTT (See Tables

6 and 7).

The rest of the paper is organized as follows.

Section 2 presents the related work. Section 3

presents the architecture for the pro- posed

learning-based TCP CC schemes, and introduces LP-

TCP and RL-TCP. Section 4 evaluates the

performance of LP-TCP and RL- TCP and

compares them to NewReno and Q-TCP on NS2.

Section 5 concludes the paper.

2 RELATED WORK

Since the internet congestion collapse in 1986,

congestion control for multiuser packet-switched

networks has remained an active research field.

Jacobson, in his seminal work TCP Tahoe [9]

and Reno [10], introduced three core phases in a

CC algorithm (i.e., slow start, congestion

avoidance, and fast recovery), which become the

foundation most TCP CC schemes build upon.

Many TCP CC schemes look for better ways to

adjust cwnd at congestion avoid- ance. For

instance, Vegas [3] treats increasing RTT as a

congestion signal and adjust cwnd to keep RTT in

a desired range. Cubic [6] modulates its cwnd

according to a cubic function. Compound [28]

reacts to delay signals and packet loss events,

and adopts a scal- able increasing rule on cwnd

in response to changes in the RTTs. While having

unique characteristics, the above mentioned TCP

CC schemes share a similarity of hard-wiring of

predefined operations on the cwnd in response to

specific feedback signals. They do not learn and

adapt from experience.

Machine learning has been used to indirectly

improve the per- formance of TCP CC schemes.

For example, it has been used to classify

congestive and contention loss [13], and to give a

better estimation of the RTT [22]. It has also been

applied to accurately forecast TCP throughput

[21]. Recently, many machine learning based TCP

CC schemes have been proposed. Remy [31]

formalizes the multiuser CC problem as the

POMDP and learns the optimum policy offline. It

needs intense offline computation and the perfor-

mance of RemyCCs depends on the accuracy of

the network and traffic models. PCC [4]

adaptively adjusts its sending rate based on

continuously carried out “micro-experiments”, but

it is rate-based and its performance depends on the

accuracy of the clocking. The learnability of TCP

CC is examined in [24], where RemyCCs are used

to understand what imperfect knowledge about the

target network would hurt the performance of

TCP CC the most.

In [16], a Q-learning based TCP (Q-TCP) was

proposed that uses RL to design a TCP CC

scheme. However, Q-TCP is designed mostly with

a single TCP connection in mind.

As we consider under- buffered networks with a

small number of TCP connections, it is helpful to

adopt more expressive features and redesign the

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 870

action space. We also propose a different credit

assignment component which we believe better

captures TCP dynamics.

3 THE PROPOSED LEARNING BASED

TCP CC SCHEMES

 In this section, we explore ways to improve the

performance of TCP CC schemes in wired

networks with an under-buffered bottle neck

link using machine intelligence. Specifically, we

propose two learning-based TCP CC schemes,

one based on supervised learning, and the other

based on RL. The two learning-based TCP CC

agents share a common architecture, shown in

Fig. 1a. It contains three components: • A

sensing engine, which processes signals from the

network, combines them with variables in the

TCP sender, and outputs an array representing

the current state. It may also compute other

quantities when required; • A learner, which

consists of an online learning engine or a learned

model. It takes in the current state, and outputs

certain “prediction”; • An actuator, which acts

(i.e., adjusts cwnd) based on the “prediction”

from the learner. The sensing engine computes

statistics that reflect how congestive the network

may be. Such statistics may include the packet

inter sending time, acknowledgment (ACK)

inter-

arrival time, and RTTs [31]. The learner serves as

the “brain” of the TCP CC agent, learn ing the

complex relationship between a certain state and

possible actions, and informs the actuator to act

accordingly. Proper design and training of the

learner remain the key to a well-performing

learning-based TCP CC scheme. Though

unnecessary, our learning based TCP CC

schemes are based on NewReno. This means that

slow start, fast retransmit, and fast recovery of

NewReno are still adopted. 3.1 LP-TCP Based on

the architecture in Fig. 1a, we introduce our first

learning based TCP CC named LP-TCP. The

intuition is simple. Since NewReno reduces

sending rate (by halving cwnd) each time a packet

loss occurs, and under-utilizes the bottleneck

bandwidth in an under buffered network, LP-

TCP predicts and reduces packet loss events,

lowers the frequency of sending rate reduction,

and strives for a better throughput. Therefore, the

learner in Fig. 1a is a packet loss predictor (LP),

which tells the actuator how likely a packet will be

lost if sent. If the probability of loss is higher than

a threshold, the actuator does not send the packet

(i.e., reduces cwnd by one). Otherwise, the

actuator sends the packet. The inputs of the

sensing engine, the learner, and the actuator are as

follows: • input to the sensing engine: Received

ACKs; • input to the learner: cwnd size, the order

of current packet in the cwnd, exponentially

weighted moving average (EWMA), time series

(TS), and minimum of ACK inter-arrival time,

EWMA, TS, and minimum of packet inter-

sending time, TS and minimum of RTT, TS of

ratios of ACK inter-arrival time, TS of ratios of

packet inter-sending time, TS of ratios of RTTs

(TS of a variable includes 8 recent samples of that

variable); • input to the actuator: Estimated

probability of loss of the current packet. To reflect

how congestive the network is, the sensing engine

outputs a length-55 feature array as the state,

based on received ACKs and variables in the TCP

sender. Now we illustrate the process of building

the loss predictor (the learner) using a supervised

learning technique, called random forests [7, 8].

3.1.1 Training the LP. The learner is a loss

predictor in LP-TCP. It takes the state as input,

and predicts the probability of a packet being lost

due to congestion should the packet be sent. We

collect training data to train the learner through

NewReno simulations on NS2. Whenever a packet

gets sent, we record the state right before the

packet goes into transmission as a feature vector.

a)

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 871

/

Figure 1: (a) Architecture of the proposed machine

learning based TCP CC schemes.

We want to mention that for LP-TCP, the packet inter-

sending time (and thus the features that depend on it) is

computed based on the packets the TCP sender is sending,

instead of from the time-stamps in the received ACKs. If the

packet is successfully delivered, this feature vector gets a

corresponding label of 0; otherwise, the label is 1 (for loss).

Since loss events are the minority events, we stop the

collection when we have enough losses in the data. In this

paper, the training data collection lasts 5000 seconds. A

random forest model is then trained with this training set. For

any feature vector representing a certain state, the model then

outputs the estimated probability of loss should a packet get

sent, which is the mean prediction of the decision trees in the

forest.

Inferencing packet loss. After training, the sensing engine, the

random forests LP, and the actuator work together as LP-

TCP. During congestion avoidance, when a new ACK is

received by the TCP sender, the cwnd expands by 1 cwnd,

and the sensing engine updates the state. When the sender

is about to send a packet, the state is computed again. The

LP then takes in the state vector, and outputs a probability of

loss of that packet. If the probability of loss is lower than a

pre-determined threshold th, the actuator sends the packet.

RL-TCP

A problem with the supervised learning based LP-TCP is that,

when the topology and parameters of a network change, a

new LP needs to be re-learned. Ideally, we would like the

TCP CC scheme to con- tinuously learn and adapt in a

dynamic network environment, given an objective. This

inspires us to formulate the TCP CC problem as an RL

problem [26], where an agent with no prior knowledge learns

to act by acting and receiving a reward (positive or negative)

from the environment, with the goal of maximizing some

kind of cumulative rewards. Doing so leads to our RL-based

TCP CC (RL- TCP). Compared to Q-TCP [16], RL-TCP tailors

the design of states and action space towards networks with

under-buffered bottleneck links. More importantly, RL-TCP

treats the temporal credit assign- ment of reward according to

TCP dynamics. The inputs of the three components in Fig. 1a

are as follows:

input to the learner: the state (i.e., EWMA of the ACK inter-

arrival time, EWMA of the packet inter-sending time, the

ratio of current RTT and the minimum RTT, the slow start

threshold, and cwnd size), and reward r from the network;

input to the actuator: a value function of current state and

actions, indicating how “good” each action is, at the current

state

4 EXPERIMENTAL RESULTS

• To run project double click on ‘run.bat’ file to

get below screen

• In above screen click on ‘Upload Network

Dataset’ button to upload dataset and get

below output

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 872

• In above screen selecting and uploading

dataset and then click on ‘Open’ button to

load dataset and get below output

• In above screen dataset loaded and now

click on ‘Preprocess Dataset’ button to

remove missing values and get below output

• In above screen Preprocessing completed and

dataset contains 1000 records and now click

on ‘Run RL-TCP Algorithm’ button to train

RL-TCP and get below output

• In above graph x-axis represents Simulation

Time and y-axis represents CWND window

size and for each packet sending we got

learning or prediction rate for existing New-

Reno (blue colour line) and propose RL-TCP

(green colour line) and in above graph we can

see RL-TCP got more packet prediction

compare to existing New-Reno.

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 873

• In above screen RL-TCP loss is 0.015 and its

throughput is 0.98% as it is processing more

packets due to less time in prediction so its

throughput will be high and now click on

• In above screen we can see LP-TCP (green

line) is also better than existing New-Reno to

handle congestion and now close above graph

to get below screen

• In above screen with RL-TCP we got throughput

as 0.98 and with LP-TCP we got
0.97 so RL-TCP is better than all other algorithms and now

click on ‘Loss & Throughput Graph’ button to get below outpu

• In above graph x-axis represents algorithm

names and y-axis represents LOSS and throughout

where orange bar is for RL-TCP and blue bar is

for LP-TCP and in both algorithms RL-TCP got

high throughput and less LOSS. So we can say

with RL-TCP we can improve congestion to get

less loss and high throughput.

5. REFERENCES

[1] Guido Appenzeller. 2005. Sizing router

buffers. Ph.D. Dissertation. Stanford University,

Palo Alto, CA.

[2] Saad Biaz and Nitin H Vaidya. 1998.

Distinguishing congestion losses from wire- less

transmission losses: A negative result. In Proc. 7th

International Conference on Computer

Communications and Networks. IEEE, Lafayette,

LA, 722–731.

[3] Lawrence S. Brakmo and Larry L.

Peterson. 1995. TCP Vegas: End to end

congestion avoidance on a global Internet. IEEE

Journal on selected Areas in communications 13,

8 (1995), 1465–1480.

[4] Mo Dong, Qingxi Li, and Doron Zarchy.

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 874

2015. PCC: Re-architecting Congestion Control for

Consistent High Performance. In Proc. 12th

USENIX Symposium on Networked Systems

Design and Implementation (NSDI’15). ACM,

Oakland, CA, 395–408.

[5] Sally Floyd and Tom Henderson. 1999.

The NewReno modification to TCP’s fast

recovery algorithm. RFC 2582 (1999).

[6] Sangtae Ha, Injong Rhee, and Lisong Xu.

2008. CUBIC: a new TCP-friendly high-speed

TCP variant. ACM SIGOPS Operating Systems

Review 42, 5 (2008), 64–74.

[7] Tin Kam Ho. 1995. Random decision

forests. In Proc. the 3rd international conference

on Document analysis and recognition. IEEE,

Montreal, Que., Canada, 278–282.

[8] Tin Kam Ho. 1998. The random subspace

method for constructing decision forests. IEEE

transactions on pattern analysis and machine

intelligence 20, 8 (1998), 832–844.

[9] Van Jacobson. 1988. Congestion

avoidance and control. In Proc. ACM SIGCOMM.

ACM, Stanford, CA, 314–329.

[10] Van Jacobson. 1990. Modified TCP

congestion avoidance algorithm. note sent to

end2end-interest mailing list (1990).

Volume 13, Issue 07, Jul 2023 ISSN 2457-0362 Page 875

