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Abstract— In this work, we offer a system of large-scale robot 

units capable of autonomously forming a variety of user-specified 
forms. We choose a subtractive rather than a cumulative 
technique, which is different from previous publications on the 
same issue. A system is formed by an initial dense, immobile 
arrangement of robots, and it is up to each individual robot to 
determine whether or not it is part of the requested shape. 
Robots that aren't part of the user-selected shape disappear, 
leaving just those robots in place. 

 
I. INTRODUCTION 

The field of research known as "swarm robotics" focuses 
on how vast numbers of robots may work together using just 
a few globally applicable principles. Swarm robots takes its 
cues from insect communities, which may accomplish goals 
that would be impossible for a person to do on their own. 
What a swarm truly is and how it functions is crucial 
information. According to the literature, a swarm is "a large 
number of locally interacting people with shared objectives," 
which indicates that the goal is to create systems with swarms 
of robots that interact with one another to achieve certain 
common goals, much as natural swarms do. 

The swarm robots may use either an additive or a 
subtractive approach to the job at hand. A group of robots 
work together until they have fused into the proper form and 
completed the assignment using an additive method. As an 
example, think of 3D printing, where layers of material are 
added and fused together in strategic locations to produce the 
desired object. The goal of the subtractive method is to have 
the remaining robots construct the appropriate shape, without 
the assistance of the pre-assembled robots. A excellent 
example of a subtractive method is cutting a paper template 
to the required form. Natural systems use both additive and 
subtractive strategies. 

The additive method, also known as the self-assembly 
technique, begins with the seed module, which specifies the 
coordinate system's origin and orientation in addition to the 
module's form or structure. The remaining modules locate 
with respect to the seed, and the shape is built up in 
successive layers. This method, also known as "guided 
growth," has been used in mobile collectives, where robots 
have complete freedom of movement, and in self-
reconfigurable systems, where robots are limited to moving 
along docking sites. Many additive self- assembly methods 
have been investigated since the additive method is more 
well-known and more extensively used than the subtractive 
method; nevertheless, the robot's mobility is strongly 

constrained by parallelism, thus it has to be very efficient. 

precise. As a result of these causes, the period required for 
form creation is rather lengthy. 

The subtractive method, also known as the self-
disassembly method, is the one that has seen the least use so 
far. This method relies on the robots being first organized in a 
dense, large group while they are idle. Coordinate systems are 
formed when one or more seed robots get the ball rolling, and 
the robots that aren't needed for the shape or structure leave 
the field. Commonly, a 2D rectangular lattice is used to 
assemble these robot units. 

A high degree of motion parallelism and a low level of 
necessary motion accuracy are two benefits of the subtractive 
technique that may make it more appealing than the additive 
approach as the number of swarm robots grows. The self-
disassembly may be used on a fleet of identical robots, such as 
modular robots, that can be organized in a regular lattice. In 
this scenario, the robot modules may take use of directional 
communication to quickly and accurately assign coordinates. 
It's important to remember that these solutions have only been 
tried out on very few modules so far. 

Here we provide a model for the programmable self-
disassembly technique, which employs just local sensing and 
interactions to completely automate a group of mobile robots 
operating in free space. Through distance sensing and 
multilateration, the robots construct a continuous coordinate 
system that can accommodate for localization mistakes on a 
smaller scale. After the coordinate system has been formed, 
the robots disassemble themselves using a decentralized 
consensus mechanism. In the end, the robots that aren't part of 
the form will walk away from it on their own without altering 
it, all with the help of a single light. Our theoretical findings 
reveal which shape classes can be produced using our method, 
and how the shape class influences the self-disassembly 
process. After verifying our method on the MATLAB 
platform with a total of 1,225 robots, we report experimental 
findings showing great reliability and accuracy despite the 
noise and faults inherent in large-scale collectives. 
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II. SELF-DISASSEMBLY ALGORITHM 

A. Robot Implementation 
Here, we detail how the robot was really built. Each 
individual robot was programmed to detect an external 
light source, do calculation and localization, and move 
about. There is no need to worry about robots colliding 
because to their built-in communication capabilities. 
These robots are set up in a predetermined coordinate 
system on a hexagonal grid. These robots have the 
default form of a 'o' since that's what the MATLAB 
plot function produces. 
B.Implementation and Algorithm 
Starting with a setup in which all of the robots are in a 
densely packed group, the primary objective of this 
method is to produce a user-specified shape as the 
ultimate outcome of the swarm robots. In this case, we 
check to see whether the user-selected shape's ultimate 
dimensions are feasible inside the initial set-up of 
swarm robots. In the first step, three robots are selected 
at random to serve as the seed robots, and they are 
localized using the starting configuration to serve as 
the coordinate system's origin and initial orientation. 
Following this, the algorithm will execute in three 
stages: 
I Self-Assembly, where robots in the desired shape 
remain stationary while those outside the shape move 
away from it; (ii) Transition using a Consensus 
Algorithm, where robots collectively determine when 
all robots have localized in order to transition to the 
next step; and (iii) Self-Disassembly, where robots in 
the desired shape remain stationary while those outside 
the shape move away from it. 
i.Coordinates are formed in a decentralized manner. 
Using multilateration, a robot may determine its 
position relative to three or more previously-located 
neighbors. If the robot has n neighbors within d1 of its 
current location, then. . . locations p1, and,dn distant 
from it. . . When given a,pn, this robot I estimates its 
location as: 
 
 
When a robot has at least three neighbors who all 
match the following conditions, it starts thinking about 
localizing: (a) the minimum angle of these three 
neighbors is more than 35%; and (b) two of these 
neighbors are within 1.25 body lengths and the other is 
within 2.5 body lengths. First, the robots must not be 
localized relative to their almost-collinear neighbors; if 
they are, the best-guess location might be ambiguous 
in the other direction. The second requirement 
guarantees the 

 

 

The robots in this triangle have had their 
distances calculated, and they are generally close to the 
mark. Assuming b) has been met, the robot will wait 
up to three iterations before checking to see if it can 
acquire more neighbors who meet c). As a result, the 
multilateration process becomes more consistent as 
each robot uses a larger pool of neighbors for 

averaging purposes. 

i.Algorithmic Consensus for a Smooth 
Transition 

Once all robots have been localized, the 
robot swarm must move on to the next phase, in 
which the robots that don't belong in the desired 
shape disengage. To achieve this, a basic 
consensus algorithm based on rumors is used. 

45



 

An agreed upon value is broadcast by all robots. For a 
robot that cannot determine its location, this consensus value 
is always 0. The consensus value for a robot with localization 
capabilities is calculated by adding 1 to the lowest value 
among its neighbors. When the value of a robot reaches a 
certain threshold, the robot group concludes that agreement 
has been established. 

Collision-Avoidant Self-Disassembly i. 

All robots that don't fit within the user-defined form must 
leave the configuration for it to be completed, and they do so 
primarily via collision avoidance, phototaxis, and anti-
phototaxis. When a moving robot gets too near to its 
neighbors, it does collision avoidance. Robots may be 
programmed to move in a phototaxic or anti-phototaxic 
fashion, respectively, depending on the shape you give them. 
If the robot detects an immobile neighbor within two body 
lengths, it will take precautions to prevent a collision. This 
reduces the likelihood that moving robots would collide with 
stationary robots inside the form, but at the expense of a 
slower rate of self-disassembly. A robot will use phototaxis 
or anti-phototaxis if it detects no other localized robots 
moving within two body lengths. 

Class B. Realistic Contours 

Robots that aren't part of the shape being formed must 
back away from it so as not to mess it up. We use phototaxis 
and anti-phototaxis, which are quick and robust against 
sensory and actuation noise in robots. However, this does 
need 

Leaving the shape must be possible for all or almost all of 
the robots using any of these two motions, which places a 
limitation on the system. Below, we detail the many shapes 
that may be solved by self-disassembly given this limitation. 
We express the forms as polygons and categorize them into 
three groups. 

In the first category are the forms that can be resolved 

with just anti-phototaxis. Well-known "star-shaped polygons" 
may be described as follows. At least one point within the 
polygon has a ray that, when cast, would hit the perimeter of 
the polygon precisely once. As long as the light source is 
positioned in such a manner, any robot located outside the 
form may retreat in a straight line (i.e., engage in anti-
phototaxis) without coming into contact with it. In most cases, 
there is a linear-time method for finding out how many points 
within a polygon meet this criterion. 

Class 2: Contours that respond to both phototaxis and anti-
phototaxis are included in this category. This set of polygons 
is defined by the following characteristic: For each point 
outside the polygon, there exists a unique point within it such 
that any ray thrown from that point either does not contact the 
perimeter of the polygon, or does so precisely twice. Since 
phototaxis is more reliable on robots, we give it preference 
over anti-phototaxis if a ray does not cross the perimeter at 
any point along the ray. If a ray has two points of contact with 
the boundary, phototaxis may be performed from locations 
along the path from the light source to the first intersection, 
and anti-phototaxis can be performed from locations beyond 
the second junction. 

The robots in a Class 3 polygon cluster in response to the 
light source, using phototaxis and anti-phototaxis strategies. 

CLASS II SHAPE 

MATLAB 
input images 

MATLAB Fig 
indicating 

Swarm of robots ready 
to be disassembled Final Result 

CLASS III SHAPES 
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Class 

 
Shape 

 
Positive Error 

 
Negative Error 

 
Mean Error 

 
 
 

I 

 
Triangle 

 
+0.245% 

 
0 

 
+0.245% 

 
Spanner 

 
+4.73% 

 
0 

 
+4.73% 

 
5 point Star 

 
+0.245% 

 
0 

 
+0.245% 

 
II 

 
U Shape 

 
+7.67% 

 
0 

 
+7.67% 

 
 

III 

 
Shield 1 

 
+13.469% 

 
0 

 
+13.469% 

 
Shield 2 

 
+8.163% 

 
0 

 
+8.163% 

Each phototaxis movement requires the other to cross its 
path. Because of the limitations imposed by our setup, self-
disassembly into Class 3 polygons is not achievable in most 
cases. Some robots may be able to use collision avoidance to 
escape from blocked areas, however this will depend on how 
deep the blocks are. 

III. SIMULATION EXPERIMENTS 

A. Simulation Setup and Protocol 

We ran 7 trials with 3 different Class 1 shapes, 1 different 
Class 2 shapes, and 1 different Class 3 forms to ensure the 
accuracy of our software. To ensure that all robots were able 
to conduct anti-phototaxis, the Class 1 forms consisted of a 5-
point starfish, a spanner, and a triangle with the light source 
positioned in the center. U-shaped Class 2 structures had the 
light source positioned above the cavity so that the robots 
within could use phototaxis and the robots outside could use 
anti-phototaxis. Class 3's outline took the form of a shield, 
with phototaxis and anti-phototaxis robots positioned such 
that they must go in opposing directions to attain their goals. 
The trials allowed us to evaluate the algorithm's speed and 
precision. 

The following details the procedure followed throughout 
the experiment. Initially, the robots were set up in a 
hexagonal grid. There were 1225 robots spread over 35 rows 
and 35 columns. Across the board, the initial arrangement of 
seed robots was determined at random. 

All experiments began with the light source being 
positioned properly. No outside help was used during the 
self-disassembly process. After 200 repetitions of self-
disassembly had begun for the class 1 forms, the experiment 
was halted. Class 2 forms are allowed 500 iterations before 
the program exits, but class 3 shapes are limited to 2000. 

The B. Result Figure depicts the beginning and end points 
of both tests, as well as the coordinates that each robot thinks 
it is on, with different colors indicating whether or not the 
robot thinks it is a part of the 

 

phototaxis or anti-phototaxis to get out of the form. 
Snapshots of the starfish and U shapes disassembling 
themselves over time are also shown in the figures. Full-
length videos documenting the starfish, spanner, and U shape 

experiments' respective self-disassembly processes are 
included in the appendices. 

We used the measures of both positive and negative error 
to conduct our analysis. Error is expressed as a percentage, 
which may be computed by dividing the number of robots by 
the total number of robots, then multiplying the result by 100 
to account for any robots that were left over after the 
configuration was finalized. There were 3 extra robots in the 
class 1 forms of triangles and 5-pointed stars. Predictability of 
this outcome suggests that more iterations should have been 
performed to prevent it. In the Spanner shape, the wrong 
placement of the light source, which should have been in the 
center of the shape but was instead placed along the boundary 
of the surface, prevented some robots from completing the 
anti-phototaxis movement because they were blocked by the 
robots that were already in the Spanner configuration. 

We counted a total of 94 robots and determined that this 
number was too high for a U-shaped class 2 robot formation. 
However, it should be emphasized that all 94 robots were 
already engaged in the phototaxis movement and that none of 
them were within 10 units of the primary U-shaped structure. 
This study estimated a margin of error of 7.67%. Fifty to one 
hundred additional iterations would have caught this mistake 
before it was committed. 

Because disassembly took significantly longer than 
expected, we had to run the simulation twice for the Shield 
shape in class 3 shape. During the first run, we expected the 
simulation to take no more than 30 minutes (or 1500 
iterations), but it ran much longer than expected. As a result, 
many errant robots remained in the configuration after the 
simulation had ended. 
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Class 

 
Shape 

 
Number of Iterations 

 
Time Taken 

 
 
 

I 

 
Triangle 

 
200 

 
260.23 secs 

 
Spanner 

 
200 

 
380.86 secs 

 
5 point Star 

 
200 

 
479.93 secs 

 
II 

 
U Shape 

 
400 

 
654.92 secs 

 

 
III 

 
Shield 1 

 
1500 

 
1838.66 secs 

 
Shield 2 

 
2000 

 
2867.96 secs 

 

The positive mistake rate was 13.469 percent on the 
approximately 165 robots we observed that had been partially 
reconfigured. It was clear that this arrangement required a lot 
more time and iterations, so we set the maximum number of 
iterations to 2000. Approximately 48 minutes into the 
simulation, 100 robots from two opposing motion sets, 
phototaxis and anti-phototaxis, collided while attempting to 
cross each other. This resulted in a deviation of 8.16 percent. 

First, we need to know how many robots aren't included in 
the final configuration; next, we can divide that number by the 
total number of robots in the configuration; and last, we can 
multiply that result by 100 to obtain the error value as a 
percentage. The negative error achieved is zero across all three 
form classes and all the simulated shapes, suggesting that both 
phases of the simulation process went smoothly and the robots' 
coordinates were delivered accurately. Therefore, there are no 
missing robots in the final arrangement. 

In Fig. 1 (b), we can see qualitatively that the coordinate 
system construction technique was successful in all three 
circumstances. All the forms have a rotation applied to them, but 
because it is global, it does not significantly affect the user's 
original shape or the coordinate system. 

 

After around four to five seconds, the coordinate system 
stabilized for forms across all categories. We also found that 
edge robots, with the fewest neighbors, were taking more time 
than expected to locate themselves. 

How long it takes to disassemble anything depends on how 
many different form classes it falls into. Class 1 forms often 
have shorter simulation times, and most configurations may be 
run in about 10 minutes. In comparison to other forms, 
disassembling a triangle takes the least amount of time at around 
5 minutes. This is due to the very simple form. 

 

When compared to the spanner form, the 5-point star takes 
the most time to dismantle. The time required to complete the 
task grows exponentially with the number of edges since the 
robots' range of motion is limited and multiple robots must go 
through the collision avoidance system to ensure there is no 
collision; this procedure must be repeated at each iteration. 

Robots experiencing phototaxis are limited to one direction of 
motion in all three spatial dimensions when the class 2 form is a 
U configuration. Because of this, running the simulation will take 
much longer. It takes roughly 11 minutes to tear the U form apart. 
It should be noted that if additional iterations were allowed for 
complete disassembly of errant robots, the time required for 
disassembly would be significantly longer in this case. 

Class 3 robots take a long time to disassemble because they 
undergo both phototaxis and anti-phototaxis, and because clusters 
of photo and anti-photo robots need to pass through each other. It 
took the robot cluster in the simulation around 48 minutes longer 
than expected to disassemble. 

Note that the disassembly was not flawless and that a 
significant number of mistakes were made in Class 3. After the 
disassembly process begins, the small cluster of robots 
(phototaxis robots) moving in opposition to the robots belonging 
to a larger cluster (anti-phototaxis robots) forms a wall-like 
structure, preventing the movement of the rest of the robots from 
both clusters of robots to pass through, which accounts for a large 
portion of the time and error. To investigate this phenomenon, we 
built a separate shape consisting of a circle of stationary robots 
and a small cluster of 15 phototaxis motion robots. Shape robots 
that don't move in any other directions hide the shape's top and 
bottom, as well. Anti-phototaxis robots populate the remaining 
space in the configuration. For the reason that immobile robots 
are lined up in a circular column: 
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Class 

 
 

Shape 

Positive Error Negative Error Total Error 

 
Our Result 

 
Gauci Paper 

Result [2] 

 
Our Result 

 
Gauci Paper 

Result [2] 

 
Our Result 

 
Gauci Paper 

Result [2] 

 
 
 

I 

 
Triangle +0.245% - 0 - +0.245% - 

 
Spanner +4.73% +1.97% 0 -5.62% +4.73% 7.59% 

 
5 point Star +0.245% +1.82% 0 -9.39% +0.245% 11.21% 

 
II 

 
U Shape +7.67% +3.52% 0 -4.70% +7.67% 8.22% 

 

 
III 

 
Shield 1 +13.469% - 0 - +13.469% - 

 
Shield 2 +8.163% - 0 - +8.163% - 

This makes room inside the form for two channels that the 
robots may travel through. These slits need at least 5 or 6 
robot widths to navigate. Multiple simulations showed that 
both channels were blocked most of the time, and that this 
behavior persisted even after lowering the number of tiny 
cluster robots to 10. Blocking of channels ended after we 
increased the minimum width of both channels to 7 and 
decreased the number of robots in the smallest cluster to 6. In 
order to avoid the construction of movement-restricting walls, 
it is essential to ensure that the combined length of the robots 
making up the tiny cluster does not surpass the breadth of the 
whole region across which it passes. Experimental results are 
not presented because they would reveal that realizing such 
shapes with the methods presented by us is extremely difficult 
due to this constraint in class 3, and that successful simulation 
of such shapes is outside the scope of this paper. 

IV. CONCLUSION 

Here, we describe and model a self-disassembly algorithm 
for a large-scale robot swarm. Our findings show that our 
collision avoidance algorithm outperforms that of Gauci Paper 
[2]. The simulation results we present here indicate that this 
type of self-disassembly algorithm has a good chance of being 
used for shape formation in modular robots and programmable 
materials due to its ability to achieve a broad class of shapes 
with high efficiency and accuracy. 

V. FUTURE WORK 

In order to handle a category of shapes for which 
phototaxis and anti-phototaxis alone are insufficient for self-
disassembly, we plan to further develop this algorithm by 
introducing a stochastic motion component in the near future. 
Including a LIDAR sensor on the robots is another way to 
improve the collision avoidance algorithm. Incorporating a 
LIDAR sensor into the robots would allow them to move at a 
higher speed, shortening the time it takes to disassemble the 
object. 
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