
Self-disassembly of swarm robots
with collision avoidance

V.Nikith Varma 19BEC0658 B.Tech [ECE]
Vellore Inst. Of Tech., Vellore.

M.Ajay Kumar 19BEC0118 B.Tech [ECE]
Vellore Inst. Of Tech., Vellore.

Shaik Shajahan 19BEC0667 B.Tech [ECE]
 Vellore Inst. Of Tech., Vellore

.

Abstract— In this work, we offer a system of large-scale robot

units capable of autonomously forming a variety of user-specified
forms. We choose a subtractive rather than a cumulative
technique, which is different from previous publications on the
same issue. A system is formed by an initial dense, immobile
arrangement of robots, and it is up to each individual robot to
determine whether or not it is part of the requested shape.
Robots that aren't part of the user-selected shape disappear,
leaving just those robots in place.

I. INTRODUCTION

The field of research known as "swarm robotics" focuses
on how vast numbers of robots may work together using just
a few globally applicable principles. Swarm robots takes its
cues from insect communities, which may accomplish goals
that would be impossible for a person to do on their own.
What a swarm truly is and how it functions is crucial
information. According to the literature, a swarm is "a large
number of locally interacting people with shared objectives,"
which indicates that the goal is to create systems with swarms
of robots that interact with one another to achieve certain
common goals, much as natural swarms do.

The swarm robots may use either an additive or a
subtractive approach to the job at hand. A group of robots
work together until they have fused into the proper form and
completed the assignment using an additive method. As an
example, think of 3D printing, where layers of material are
added and fused together in strategic locations to produce the
desired object. The goal of the subtractive method is to have
the remaining robots construct the appropriate shape, without
the assistance of the pre-assembled robots. A excellent
example of a subtractive method is cutting a paper template
to the required form. Natural systems use both additive and
subtractive strategies.

The additive method, also known as the self-assembly
technique, begins with the seed module, which specifies the
coordinate system's origin and orientation in addition to the
module's form or structure. The remaining modules locate
with respect to the seed, and the shape is built up in
successive layers. This method, also known as "guided
growth," has been used in mobile collectives, where robots
have complete freedom of movement, and in self-
reconfigurable systems, where robots are limited to moving
along docking sites. Many additive self- assembly methods
have been investigated since the additive method is more
well-known and more extensively used than the subtractive
method; nevertheless, the robot's mobility is strongly

constrained by parallelism, thus it has to be very efficient.

precise. As a result of these causes, the period required for
form creation is rather lengthy.

The subtractive method, also known as the self-
disassembly method, is the one that has seen the least use so
far. This method relies on the robots being first organized in a
dense, large group while they are idle. Coordinate systems are
formed when one or more seed robots get the ball rolling, and
the robots that aren't needed for the shape or structure leave
the field. Commonly, a 2D rectangular lattice is used to
assemble these robot units.

A high degree of motion parallelism and a low level of
necessary motion accuracy are two benefits of the subtractive
technique that may make it more appealing than the additive
approach as the number of swarm robots grows. The self-
disassembly may be used on a fleet of identical robots, such as
modular robots, that can be organized in a regular lattice. In
this scenario, the robot modules may take use of directional
communication to quickly and accurately assign coordinates.
It's important to remember that these solutions have only been
tried out on very few modules so far.

Here we provide a model for the programmable self-
disassembly technique, which employs just local sensing and
interactions to completely automate a group of mobile robots
operating in free space. Through distance sensing and
multilateration, the robots construct a continuous coordinate
system that can accommodate for localization mistakes on a
smaller scale. After the coordinate system has been formed,
the robots disassemble themselves using a decentralized
consensus mechanism. In the end, the robots that aren't part of
the form will walk away from it on their own without altering
it, all with the help of a single light. Our theoretical findings
reveal which shape classes can be produced using our method,
and how the shape class influences the self-disassembly
process. After verifying our method on the MATLAB
platform with a total of 1,225 robots, we report experimental
findings showing great reliability and accuracy despite the
noise and faults inherent in large-scale collectives.

44

II. SELF-DISASSEMBLY ALGORITHM

A. Robot Implementation
Here, we detail how the robot was really built. Each
individual robot was programmed to detect an external
light source, do calculation and localization, and move
about. There is no need to worry about robots colliding
because to their built-in communication capabilities.
These robots are set up in a predetermined coordinate
system on a hexagonal grid. These robots have the
default form of a 'o' since that's what the MATLAB
plot function produces.
B.Implementation and Algorithm
Starting with a setup in which all of the robots are in a
densely packed group, the primary objective of this
method is to produce a user-specified shape as the
ultimate outcome of the swarm robots. In this case, we
check to see whether the user-selected shape's ultimate
dimensions are feasible inside the initial set-up of
swarm robots. In the first step, three robots are selected
at random to serve as the seed robots, and they are
localized using the starting configuration to serve as
the coordinate system's origin and initial orientation.
Following this, the algorithm will execute in three
stages:
I Self-Assembly, where robots in the desired shape
remain stationary while those outside the shape move
away from it; (ii) Transition using a Consensus
Algorithm, where robots collectively determine when
all robots have localized in order to transition to the
next step; and (iii) Self-Disassembly, where robots in
the desired shape remain stationary while those outside
the shape move away from it.
i.Coordinates are formed in a decentralized manner.
Using multilateration, a robot may determine its
position relative to three or more previously-located
neighbors. If the robot has n neighbors within d1 of its
current location, then. . . locations p1, and,dn distant
from it. . . When given a,pn, this robot I estimates its
location as:

When a robot has at least three neighbors who all
match the following conditions, it starts thinking about
localizing: (a) the minimum angle of these three
neighbors is more than 35%; and (b) two of these
neighbors are within 1.25 body lengths and the other is
within 2.5 body lengths. First, the robots must not be
localized relative to their almost-collinear neighbors; if
they are, the best-guess location might be ambiguous
in the other direction. The second requirement
guarantees the

The robots in this triangle have had their
distances calculated, and they are generally close to the
mark. Assuming b) has been met, the robot will wait
up to three iterations before checking to see if it can
acquire more neighbors who meet c). As a result, the
multilateration process becomes more consistent as
each robot uses a larger pool of neighbors for

averaging purposes.

i.Algorithmic Consensus for a Smooth
Transition

Once all robots have been localized, the
robot swarm must move on to the next phase, in
which the robots that don't belong in the desired
shape disengage. To achieve this, a basic
consensus algorithm based on rumors is used.

45

An agreed upon value is broadcast by all robots. For a
robot that cannot determine its location, this consensus value
is always 0. The consensus value for a robot with localization
capabilities is calculated by adding 1 to the lowest value
among its neighbors. When the value of a robot reaches a
certain threshold, the robot group concludes that agreement
has been established.

Collision-Avoidant Self-Disassembly i.

All robots that don't fit within the user-defined form must
leave the configuration for it to be completed, and they do so
primarily via collision avoidance, phototaxis, and anti-
phototaxis. When a moving robot gets too near to its
neighbors, it does collision avoidance. Robots may be
programmed to move in a phototaxic or anti-phototaxic
fashion, respectively, depending on the shape you give them.
If the robot detects an immobile neighbor within two body
lengths, it will take precautions to prevent a collision. This
reduces the likelihood that moving robots would collide with
stationary robots inside the form, but at the expense of a
slower rate of self-disassembly. A robot will use phototaxis
or anti-phototaxis if it detects no other localized robots
moving within two body lengths.

Class B. Realistic Contours

Robots that aren't part of the shape being formed must
back away from it so as not to mess it up. We use phototaxis
and anti-phototaxis, which are quick and robust against
sensory and actuation noise in robots. However, this does
need

Leaving the shape must be possible for all or almost all of
the robots using any of these two motions, which places a
limitation on the system. Below, we detail the many shapes
that may be solved by self-disassembly given this limitation.
We express the forms as polygons and categorize them into
three groups.

In the first category are the forms that can be resolved

with just anti-phototaxis. Well-known "star-shaped polygons"
may be described as follows. At least one point within the
polygon has a ray that, when cast, would hit the perimeter of
the polygon precisely once. As long as the light source is
positioned in such a manner, any robot located outside the
form may retreat in a straight line (i.e., engage in anti-
phototaxis) without coming into contact with it. In most cases,
there is a linear-time method for finding out how many points
within a polygon meet this criterion.

Class 2: Contours that respond to both phototaxis and anti-
phototaxis are included in this category. This set of polygons
is defined by the following characteristic: For each point
outside the polygon, there exists a unique point within it such
that any ray thrown from that point either does not contact the
perimeter of the polygon, or does so precisely twice. Since
phototaxis is more reliable on robots, we give it preference
over anti-phototaxis if a ray does not cross the perimeter at
any point along the ray. If a ray has two points of contact with
the boundary, phototaxis may be performed from locations
along the path from the light source to the first intersection,
and anti-phototaxis can be performed from locations beyond
the second junction.

The robots in a Class 3 polygon cluster in response to the
light source, using phototaxis and anti-phototaxis strategies.

CLASS II SHAPE

MATLAB
input images

MATLAB Fig
indicating

Swarm of robots ready
to be disassembled Final Result

CLASS III SHAPES

46

Class

Shape

Positive Error

Negative Error

Mean Error

I

Triangle

+0.245%

0

+0.245%

Spanner

+4.73%

0

+4.73%

5 point Star

+0.245%

0

+0.245%

II

U Shape

+7.67%

0

+7.67%

III

Shield 1

+13.469%

0

+13.469%

Shield 2

+8.163%

0

+8.163%

Each phototaxis movement requires the other to cross its
path. Because of the limitations imposed by our setup, self-
disassembly into Class 3 polygons is not achievable in most
cases. Some robots may be able to use collision avoidance to
escape from blocked areas, however this will depend on how
deep the blocks are.

III. SIMULATION EXPERIMENTS

A. Simulation Setup and Protocol

We ran 7 trials with 3 different Class 1 shapes, 1 different
Class 2 shapes, and 1 different Class 3 forms to ensure the
accuracy of our software. To ensure that all robots were able
to conduct anti-phototaxis, the Class 1 forms consisted of a 5-
point starfish, a spanner, and a triangle with the light source
positioned in the center. U-shaped Class 2 structures had the
light source positioned above the cavity so that the robots
within could use phototaxis and the robots outside could use
anti-phototaxis. Class 3's outline took the form of a shield,
with phototaxis and anti-phototaxis robots positioned such
that they must go in opposing directions to attain their goals.
The trials allowed us to evaluate the algorithm's speed and
precision.

The following details the procedure followed throughout
the experiment. Initially, the robots were set up in a
hexagonal grid. There were 1225 robots spread over 35 rows
and 35 columns. Across the board, the initial arrangement of
seed robots was determined at random.

All experiments began with the light source being
positioned properly. No outside help was used during the
self-disassembly process. After 200 repetitions of self-
disassembly had begun for the class 1 forms, the experiment
was halted. Class 2 forms are allowed 500 iterations before
the program exits, but class 3 shapes are limited to 2000.

The B. Result Figure depicts the beginning and end points
of both tests, as well as the coordinates that each robot thinks
it is on, with different colors indicating whether or not the
robot thinks it is a part of the

phototaxis or anti-phototaxis to get out of the form.
Snapshots of the starfish and U shapes disassembling
themselves over time are also shown in the figures. Full-
length videos documenting the starfish, spanner, and U shape

experiments' respective self-disassembly processes are
included in the appendices.

We used the measures of both positive and negative error
to conduct our analysis. Error is expressed as a percentage,
which may be computed by dividing the number of robots by
the total number of robots, then multiplying the result by 100
to account for any robots that were left over after the
configuration was finalized. There were 3 extra robots in the
class 1 forms of triangles and 5-pointed stars. Predictability of
this outcome suggests that more iterations should have been
performed to prevent it. In the Spanner shape, the wrong
placement of the light source, which should have been in the
center of the shape but was instead placed along the boundary
of the surface, prevented some robots from completing the
anti-phototaxis movement because they were blocked by the
robots that were already in the Spanner configuration.

We counted a total of 94 robots and determined that this
number was too high for a U-shaped class 2 robot formation.
However, it should be emphasized that all 94 robots were
already engaged in the phototaxis movement and that none of
them were within 10 units of the primary U-shaped structure.
This study estimated a margin of error of 7.67%. Fifty to one
hundred additional iterations would have caught this mistake
before it was committed.

Because disassembly took significantly longer than
expected, we had to run the simulation twice for the Shield
shape in class 3 shape. During the first run, we expected the
simulation to take no more than 30 minutes (or 1500
iterations), but it ran much longer than expected. As a result,
many errant robots remained in the configuration after the
simulation had ended.

4647

Class

Shape

Number of Iterations

Time Taken

I

Triangle

200

260.23 secs

Spanner

200

380.86 secs

5 point Star

200

479.93 secs

II

U Shape

400

654.92 secs

III

Shield 1

1500

1838.66 secs

Shield 2

2000

2867.96 secs

The positive mistake rate was 13.469 percent on the
approximately 165 robots we observed that had been partially
reconfigured. It was clear that this arrangement required a lot
more time and iterations, so we set the maximum number of
iterations to 2000. Approximately 48 minutes into the
simulation, 100 robots from two opposing motion sets,
phototaxis and anti-phototaxis, collided while attempting to
cross each other. This resulted in a deviation of 8.16 percent.

First, we need to know how many robots aren't included in
the final configuration; next, we can divide that number by the
total number of robots in the configuration; and last, we can
multiply that result by 100 to obtain the error value as a
percentage. The negative error achieved is zero across all three
form classes and all the simulated shapes, suggesting that both
phases of the simulation process went smoothly and the robots'
coordinates were delivered accurately. Therefore, there are no
missing robots in the final arrangement.

In Fig. 1 (b), we can see qualitatively that the coordinate
system construction technique was successful in all three
circumstances. All the forms have a rotation applied to them, but
because it is global, it does not significantly affect the user's
original shape or the coordinate system.

After around four to five seconds, the coordinate system
stabilized for forms across all categories. We also found that
edge robots, with the fewest neighbors, were taking more time
than expected to locate themselves.

How long it takes to disassemble anything depends on how
many different form classes it falls into. Class 1 forms often
have shorter simulation times, and most configurations may be
run in about 10 minutes. In comparison to other forms,
disassembling a triangle takes the least amount of time at around
5 minutes. This is due to the very simple form.

When compared to the spanner form, the 5-point star takes
the most time to dismantle. The time required to complete the
task grows exponentially with the number of edges since the
robots' range of motion is limited and multiple robots must go
through the collision avoidance system to ensure there is no
collision; this procedure must be repeated at each iteration.

Robots experiencing phototaxis are limited to one direction of
motion in all three spatial dimensions when the class 2 form is a
U configuration. Because of this, running the simulation will take
much longer. It takes roughly 11 minutes to tear the U form apart.
It should be noted that if additional iterations were allowed for
complete disassembly of errant robots, the time required for
disassembly would be significantly longer in this case.

Class 3 robots take a long time to disassemble because they
undergo both phototaxis and anti-phototaxis, and because clusters
of photo and anti-photo robots need to pass through each other. It
took the robot cluster in the simulation around 48 minutes longer
than expected to disassemble.

Note that the disassembly was not flawless and that a
significant number of mistakes were made in Class 3. After the
disassembly process begins, the small cluster of robots
(phototaxis robots) moving in opposition to the robots belonging
to a larger cluster (anti-phototaxis robots) forms a wall-like
structure, preventing the movement of the rest of the robots from
both clusters of robots to pass through, which accounts for a large
portion of the time and error. To investigate this phenomenon, we
built a separate shape consisting of a circle of stationary robots
and a small cluster of 15 phototaxis motion robots. Shape robots
that don't move in any other directions hide the shape's top and
bottom, as well. Anti-phototaxis robots populate the remaining
space in the configuration. For the reason that immobile robots
are lined up in a circular column:

48

Class

Shape

Positive Error Negative Error Total Error

Our Result

Gauci Paper

Result [2]

Our Result

Gauci Paper

Result [2]

Our Result

Gauci Paper

Result [2]

I

Triangle +0.245% - 0 - +0.245% -

Spanner +4.73% +1.97% 0 -5.62% +4.73% 7.59%

5 point Star +0.245% +1.82% 0 -9.39% +0.245% 11.21%

II

U Shape +7.67% +3.52% 0 -4.70% +7.67% 8.22%

III

Shield 1 +13.469% - 0 - +13.469% -

Shield 2 +8.163% - 0 - +8.163% -

This makes room inside the form for two channels that the
robots may travel through. These slits need at least 5 or 6
robot widths to navigate. Multiple simulations showed that
both channels were blocked most of the time, and that this
behavior persisted even after lowering the number of tiny
cluster robots to 10. Blocking of channels ended after we
increased the minimum width of both channels to 7 and
decreased the number of robots in the smallest cluster to 6. In
order to avoid the construction of movement-restricting walls,
it is essential to ensure that the combined length of the robots
making up the tiny cluster does not surpass the breadth of the
whole region across which it passes. Experimental results are
not presented because they would reveal that realizing such
shapes with the methods presented by us is extremely difficult
due to this constraint in class 3, and that successful simulation
of such shapes is outside the scope of this paper.

IV. CONCLUSION

Here, we describe and model a self-disassembly algorithm
for a large-scale robot swarm. Our findings show that our
collision avoidance algorithm outperforms that of Gauci Paper
[2]. The simulation results we present here indicate that this
type of self-disassembly algorithm has a good chance of being
used for shape formation in modular robots and programmable
materials due to its ability to achieve a broad class of shapes
with high efficiency and accuracy.

V. FUTURE WORK

In order to handle a category of shapes for which
phototaxis and anti-phototaxis alone are insufficient for self-
disassembly, we plan to further develop this algorithm by
introducing a stochastic motion component in the near future.
Including a LIDAR sensor on the robots is another way to
improve the collision avoidance algorithm. Incorporating a
LIDAR sensor into the robots would allow them to move at a
higher speed, shortening the time it takes to disassemble the
object.

ACKNOWLEDGMENT

Prof. Dr.G.Venugopal served as our guide and provided
invaluable input on this project.

REFERENCES

[1] M. H. Wagdy, H. A. Khalil and S. A. Maged, "Swarm Robotics Pattern

Formation Algorithms," 2020 8th International Conference on Control,
Mechatronics and Automation (ICCMA), 2020, pp. 12-17.

[2] Melvin Gauci, Radhika Nagpal and Michael Rubenstein ” Programmable
Self-Disassembly for Shape Formation in Large-Scale Robot
Collectives”.

[3] Y. Khaluf, E. Mathews and F. J. Rammig, "Self-Organized Cooperation
in Swarm Robotics," 2011 14th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, 2011, pp. 217-226.

[4] M. Dorigo, "SWARM-BOT: an experiment in swarm
robotics," Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005.
SIS 2005., 2005, pp. 192-200.

[5] R. Arnold, K. Carey, B. Abruzzo and C. Korpela, "What is A Robot
Swarm: A Definition for Swarming Robotics," 2019 IEEE 10th Annual
Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), 2019, pp. 0074-0081.

[6] A. S. Anoop and P. Kanakasabapathy, "Review on swarm robotics
platforms," 2017 International Conference on Technological
Advancements in Power and Energy (TAP Energy), 2017, pp. 1-6.

[7] A. Foroutannia, M. Shoryabi, A. A. Anaraki and A. Rowhanimanesh,
"SIN: A Programmable Platform for Swarm Robotics," 2021 26th
International Computer Conference, Computer Society of Iran (CSICC),
2021, pp. 1-5.

[8] MARCO DORIGO, GUY THERAULAZ, VITO TRIANNI “Swarm
Robotics: Past, Present, and Future” PROCEEDINGS OF THE IEEE |
Vol. 109, No. 7, July 2021.

[9] G. Beltrame, E. Merlo, J. Panerati and C. Pinciroli, "Engineering Safety
in Swarm Robotics," 2018 IEEE/ACM 1st International Workshop on
Robotics Software Engineering (RoSE), 2018, pp. 36-39.

[10] H. Wei, Y. Chen, M. Liu, Y. Cai and T. Wang, "Swarm Robots: From
Self-assembly to Locomotion," in The Computer Journal, vol. 54, no. 9,
pp. 1465-1474, Sept. 2011

49

