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Abstract—Heart-related anomalies are among the most 
common causes of death worldwide. Patients are often 
asymptomatic until a fatal event happens, and even when they are 
under observation, trained personnel is needed in order to 
identify a heart anomaly. In the last decades, there has been 
increasing evidence of how Machine Learning can be leveraged to 
detect such anomalies, thanks to the availability of 
Electrocardiograms (ECG) in digital format. New developments in 
technology have allowed to exploit such data to build models able 
to analyze the patterns in the occurrence of heart beats, and spot 
anomalies from them. In this work, we propose a novel 
methodology to extract ECG-related features and predict the type 
of ECG recorded in real time (less than 30 milliseconds). Our 
models leverage a collection of almost 40 thousand ECGs labeled 
by expert cardiologists across different hospitals and countries, 
and are able to detect 7 types of signals: Normal, AF, Tachycardia, 
Bradycardia, Arrhythmia, Other or Noisy. We exploit the XGBoost 
algorithm, a leading machine learning method, to train models 
achieving out of sample F1 Scores in the range 0.93 – 0.99. To our 
knowledge, this is the first work reporting high performance 
across hospitals, countries and recording standards.  

Index Terms—Boosting, ECG, Machine Learning, Arrhythmia  

I. INTRODUCTION  

Despite the continuous development of medical practices, 

heartrelated diseases are still the leading cause of death in the 

United States [13]. Atrial Fibrillation (AF) is among the most 

common ones, as it affects 1-2% of the general population, causing 

hundreds of thousands of deaths every year, as it can lead to a 

stroke, heart failure or coronary artery disease [14]. Machine 

Learning (ML) techniques are becoming more and more accepted in 

the world of healthcare as a support to traditional ways of disease 

detection. In fact, algorithms can be leveraged to process a sizeable 

amount of data in a fast and accurate way, allowing to get non-

obvious insights directly from the observations.  

One of the problems of AF detection is that it is often 

asymptomatic (it is incidentally identified in 30–45% of patients who 

had an electrocardiogram for unrelated reasons [19]) and trained 

personnel is required to spot the disease from electrocardiograms 

(ECG). Unfortunately, if AF is not promptly recognized and treated, 

it can lead to a fatal event, such as a stroke. Similarly, Tachycardia 

(excessively fast heart rate) and Bradycardia (excessively slow heart 

rate) are common heart diseases. Despite being less dangerous than  

 

 

AF, they can lead to serious complications, such as heart failure, 

if left untreated.  

Given the severity and occurrence of heart diseases, procedures 

to analyze ECGs have been in place for a long time. A breakthrough  

algorithm for QRS complex detection was published in 1985 [27], 

starting the era of machine learning analysis to detect arrhytmia 

from ECGs, also thanks to the MIT-BIH [24] made available since  

1980 by Physionet. The availability of such data has inspired many  
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works in the literature [30], [26], but some limitations of these works 

come from the unrealistic nature of their datasets: there are only 

Normal or AF ECGs (there can be other types of signal); only clean 

signals are considered; the sample size is small. More recent projects 

leverage Deep Neural Networks to extract non-linear features from 

the ECGs [29], [6], [16]. In the first project, sponsored by Apple for the 

AF detector in its Watch products, the authors work on a dataset of 

400 thousand patients and achieve Positive Predictive Value of 0.84, 

but they don’t disclose the details of the model used. In the second 

project, the authors create an AF detector by analyzing 1 million 

signals with 12 leads and 10 seconds long, achieving an F1 Score of 

0.45. In the third one, the authors build a Convolutional Neural 

Network to detect 12 heart abnormalities from 91 thousands 12leads 

signals of various length, achieving AUC of 0.97 and F1 Score of 0.84. 

The data for these projects is not available to the public, thus 

complicating an objective comparison. In [33], the authors propose 

their analysis on a proprietary dataset, containing more than 40 

thousand patients, and leverage Gradient Boosting Trees to achieve 

an F1 Score of 0.97. Finally, in [8] the authors develop a neural 

network framework to analyze a proprietary dataset containing 55 

types of arrhythmias and more than 32 thousand patients, achieving 

0.86 F1 Score. The training datasets from the last two projects are 

available online.  

In this work, we present a novel procedure to accurately detect 

heart diseases in real-time from the analysis of short single-lead ECGs 

(9-61 seconds). We observe the characteristics of ventricular response 

and analyze the predictability of the inter-beat timing of the QRS 
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complexes [5] (see Figure 1) in the ECG to detect irregular patterns in 

the data. Specifically, we extract four groups of features that we use 

for the predictions: time and non-linear domain, distance-based and 

time series characteristics. The model is meant to be used as a fast 

detector for heart diseases, able to recognize various types of 

outcomes: Normal, AF, Tachycardia, Bradycardia, Arrhythmia, Other 

(label to indicate other types of heart anomaly) and Noisy (can’t be 

classified, and needs to be recorded again). If an anomaly is detected, 

the patient should be visited by a specialist to assess the stage of the 

disease and possible treatments.  

We leverage the XGBoost algorithm [10], a leading machine 

learning method, to train and evaluate our models on three different 

datasets, achieving strong out of sample performance (F1 Score ≥  

0.94). Then, we test the performance of our models when used as  

predictors accross datasets and we achieve similar results (F1 Score ≥ 

0.93).  

II. DATA  

We focus our work on three main datasets. The first one comes from 

the 2017 Challenge from Physionet [12], which consists of a collection 

of 8828 recordings together with the corresponding labels (Normal, 

AF, Other and Noisy) given from expert cardiologists. This dataset has 

been recorded through AliveCor [3], a portable device able to record 

electrocardiograms. The second one comes from the 2019 Tianchi 

Hefei High-Tech Cup ECG Human-Machine Intelligence Competition 

[2], and contains 20019 observations across 5 different labels (Normal, 

Tachycardia, Bradycardia, Arrhythmia, AF) annotated by expert 

cardiologists. The third one comes from Chapman University and 

Shaoxing People’s Hospital [1] and contains 10646 observation with 

the corresponding labels (Bradycardia, Normal, AF, Tachycardia) given 

by expert cardiologists.  

There are significant differences among the datasets. The first one 

is a collection of recordings of people from the United States, while 

the other two are recorded among the Chinese population. Moreover, 

the first dataset is recorded through a wearable device at 300 Hz 

(samples per second) and have a length ranging between 9 and 61 

seconds. The ECG signals of the other two are 10 seconds long and are 

recorded in hospital with professional machines at 500 Hz. For this 

reason, the first one comes with a single lead recording, while the 

other two have the usual 12 ECG leads. However, we believe that our 

model can be most useful when used to detect heart problems in real 

time, through the use of portable devices. Thus, in order to simulate a 

real time recording, we kept only lead II (the one containing the best 

QRS recordings) in the signals from the two Chinese datasets, and 

proceed with a unified pipeline for our analysis. These two datasets 

also provide demographics information (such as Age, Gender) of the 

patients, which is very valuable because heart diseases are often 

correlated with such characteristics.  

III. PIPELINE  

A. Signal Processing  

While an ECG is recorded, there are a number of different factors 

that can impact the quality of the signal, such as the movement of the 

patient or the powerline noise coming from the electric component of 

the machinery. Thus, preprocessing the original recording is a 

necessary step to eliminate the noise in the data. We apply two filters: 

butterworth highpass [7] (lowcut = 0.5 Hz) and band-pass [9] (cutoff = 

0.05 Hz), and then we scale the signals to have zero mean and unit 

variance. These operations are performed through the Scikit-Learn 

[28] and SciPy [32] implementations in Python.  

B. Feature Extraction  

Our approach is based on the extraction of features (see Appendix 

for full list of features) directly from the recorded ECGs. Specifically, 

we develop a novel method to extract in real time 110 features, which 

can be divided in four main groups, as described in Table I:  

 

Group  Description  Count 

1  Time-domain indices of HRV  12  

2  Nonlinear-domain indices of HRV  7  

3  Distance-based features  40  

4  Time series ECG characteristics  51  

First, we find the R peaks in the QRS complexes of each ECG (Figure 

1) by implementing the Pan-Tompkins algorithm [23]. For the first 

group of features, we analyze the QRS complex of each signal and we 

calculate statistics (e.g. mean, standard deviation, proportion of 

abnormal intervals) related to the interval between subsequent R 

peaks. For the second group, we calculate non-linear features related 

to the Heart Rate Variability (HRV) of the patients (e.g. Cardiac 

Sympathetic Index [31]). For the third group, we detect the Q, S, P and 

T waves by inspecting the near surroundings of the R peaks. In fact, 

once the R peaks are accurately identified, the other four points can 

be easily found, as Figure 1 intuitively suggests. Point Q and S are 

downward deflections of the QRS complex respectively immediately 

before and after the R peak. On the other hand, point P and T are 

smaller peaks occurring respectively right before point Q and right 

after point S. The area of inspection around the R peaks has been 

determined through extensive experiments to find the most accurate 

results. Specifically, let A, B and C be consecutive R peaks, α be the 

distance between A and B, and β be that between B and C: point P 

corresponds to the maximum value in segment B − 0.35α, point Q 

corresponds to the minimum value in segment B − 0.1α, point S 

corresponds to the minimum value in segment B +0.1β and point T 

corresponds to the maximum value in segment B + 0.35β. Other 

methods such as moving averages and derivative analysis have been 

explored throughout the work, proving to be less accurate, much 

slower and thus less viable. Once the 5 points of the PQRST complex 

are found, we calculate the pair-wise vertical and horizontal distances 

between each combination. Then, we calculate the average, median, 

minimum, maximum, standard deviation for each of them, for a total 

of 109 features. For the fourth group, we leverage the TSFRESH python 

package [11], and we extract 742 features related to the 

characteristics of an ECG as a time series. Despite increasing the 

computational complexity, the last group accounts for significant 

improvement in performance (up to 7%), thanks to its focus on time 
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series oriented features. As a final result, we obtain a dataset 

composed of 880 features for each signal.  

 

Fig. 1. Visualization of a QRS complex in an ECG.  

C. Modeling Approach  

The problem under consideration is multi-class classification, so 

that it is not possible to directly leverage the usual methods for binary 

classification. However, the XGBoost algorithm [10] allows to set as its 

objective the softmax function:  

  ,  (1) which outputs the 

probability that a given observation belongs to each of the labels zi in 

the dataset in a vector format. Then, the classifier minimizes the 

cross-entropy loss between the real distribution of labels p and the 

estimated probabilities q:  

  ,  (2)  

where x is the set of all the observations in the data, and p is the 

onehot encoding of the true label associated to each observation.  

We train 5 different models: one for each available dataset (3), and 

then we exploit overlapping labels among datasets to train 2 models 

and assess the predictive performance across data sources. 

Specifically, we have overlapping labels between Tianchi and 

Chapman data regarding Normal, Tachycardia and Bradycardia, and 

between Physionet and Chapman data regarding Normal and AF 

(Tianchi data has too few AF observations). In the case of Tianchi and 

Chapman, we leverage the features available in the data, in addition 

to the 110 we extract with our procedure (e.g. Age, Gender, T-Offset, 

P-Offset etc.). Due to the different set of labels present across 

datasets, the two cross-dataset models are trained on the subset of 

overlapping labels in the training data and evaluated only on the 

observations having these labels in the testing data. Table II describes 

in detail the 5 models, listing the dataset specific features that are 

used in addition to the 110 we extract, and summarizing the patients, 

labels, training, testing, signal and sampling characteristics of each 

dataset.  

D. Feature Selection  

Inevitably, the features that we extract in Section III-B are highly 

collinear, thus it is extremely important to select a subset of them in 

order to improve the performance of each classifier and speed up the 

extraction process. We leverage the built-in feature importance 

method of the XGBoost algorithm, which ranks the features that have 

the highest explanatory power with respect to the outcome.  

Specifically, for each of the 5 tasks presented in Section III-C, we train 

a XGBoost model with default parameters. Then, for each of these 

models, we select the top 50 features identified by the algorithm. 

Finally, among these 250 features, 140 are duplicates, thus leaving 

with 110 features for the final model. Finally, we notice that the 

performance of the models doesn’t improve by adding other features, 

finding that 110 is the minimum number of features not to have any 

drop in performance, accounting for a significant reduction in 

dimensionality from the initial set of 880 features extracted. After the 

final set of features is decided, we find the optimal set of parameters 

for each models according to the methods explained in Section III-E.  

E. Methods  

In our work, we leverage the XGBoost algorithm [10] to train our 

models and the Optuna optimization framework [4] to tune its 

parameters. Finally, we use SHAP [20], [21], [22] to explain which 

features have the most explanatory power for each label present in 

the training data.  

a) XGBoost: XGBoost [10] is one of the most popular and 

performing tree-ensemble methods for binary classification. It is 

based on an iterative procedure that leverages a large number of 

trees. Its strength lies in the iterative correction procedure on which it 

is based, so that new trees are added to correct the errors made by 

earlier trees, allowing the model to handle better the harder cases. 

There are many hyperparameters determining its performance, the 

most important of which are: depth of trees, number of trees and 

learning rate. The tuning of the parameters of the algorithm have a 

significant impact on its performance, and a proper procedure can be 

followed to avoid the overfitting on the training data: there is usually 

a trade-off between the performance on the training set and that on 

an external testing set. Proper tuning allows to achieve a strong 

performance on both datasets, if there is enough explanatory power 

in the variables of the dataset.  

In this work, we tune seven parameters. The maximum depth of a 

tree determines the maximum number of nodes that can exist 

between the root node and the farthest leaf in the tree: it takes 

positive integer values, with large ones usually leading to overfitting. 

The number of estimators controls the number of trees to fit in the 

training: it takes positive integer values, with large ones usually lead 

to overfitting. The learning rate η controls the weighting factor for 

corrections by new trees: it takes values between 0 and 1, with values 

closer to 0 determining fewer corrections for each tree. The parameter 

γ determines the minimum loss reduction required to make a further 

partition on a leaf node of a tree: it takes positive values, with larger 

ones defining a more conservative model. The parameter λ is the L2 

regularization on the weights of the features: it takes positive values, 

with the larger ones shrinking the weights, thus making the model 

more conservative. The parameter α is the L1 regularization on the 

weights of the features: it takes positive values, with the larger ones 

driving to 0 the weights, defining a more conservative model. 

Minimum child weight is the minimum Hessian weight required to 

create a new node: it takes positive values, with higher ones making 

the model more conservative. All remaining parameters are set to 

their default values.  

b) Optuna: Optuna [4] is a leading optimization framework 

leveraging Tree-structured Parzen Estimator (TPE) to optimize an 

objective function over a defined parameter space. Each of the 5 

models is trained independently following three steps. We choose the 
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range (the same for all the models) of possible values for the seven 

parameters explained above, we define the objective function to 

maximize as the average 70-folds cross validation F1 Score , and finally 

we leverage multiple cores to maximize the objective function over 

500 iterations.  

c) SHAP: SHAP [20], [21], [22] is a method to interpret Machine 

Learning models through a game theory approach. This method is 

helpful to dig further into how the final predicted, so that it highlights 

the most important features and explains how they drive the results 

in an understandable way.  

The analysis has been performed using Python 3.7.5.  

F. Performance Evaluation  

In order to assess the performance of our procedure, for the 

Physionet data we exploit the external 300 ECGs provided as 

validation set, while for the other models we divide the data 70% 

training and 30% testing set. Then, we report the Accuracy, Precision, 

Recall and F1 Score calculated on each test dataset. For example, in 

the case of Atrial Fibrillation, we calculate the metrics as:  

Correct Predictions  

  Accuracy =  (3)  

Number of Predictions  

True Positive  

Precision =(4)  

True Positive + False Positive  

True Positive  

Recall =(5)  

 True Positive + False Negative   

  2Aa  2(precision · recall)   

  F1a =    =  ,  

A + a  precision + recall  

(6)  

where Aa is the number of correct AF predictions, A is the number of 

predicted AF and a is the number of true AF. The same calculation is 

performed for the all the other classes, and we report both the 

arithmetic and weighted mean of the F1 Scores, for each model that 

we train. The weighted F1 Score is calculated as:  

 Weighted F1 Score  (7) with i = 1, ..., n, with n being 

the number of classes and Ni being the number of observations for 

class i. The accuracy is calculated as the number of correct predictions 

over the total number of predictions. In all the three datasets there is 

only one recording per patient, thus it is not possible to have an unfair 

evaluation during the trainingtesting step.  

G. Output Calibration  

Confidence calibration is a particularly relevant problem in a 

healthcare setting like the one addressed in this manuscript: when a 

Machine Learning model makes a prediction, it is important that this 

output can be trusted. For example, if the model makes 100 label in 

the paper), inspect the relationship between accuracy and confidence, 

and calculate the corresponding Expected Calibration Error (ECE). To 

estimate the expected accuracy, the predictions are grouped in M 

interval bins (10 in this case) and we calculate the accuracy of each bin 

Bm as:  

 acc() (8) m i∈Bm  

where yˆi and yi are the predicted and true class labels for sample i.  

The confidence of bin Bm is calculated as:  

  conf(   

   (9) m  
i∈Bm  

where pˆi is the confidence for sample i. A perfectly calibrated model 

would have acc(Bm) = conf(Bm) for all m ∈ (1,...,M). The Expected 

Calibration Error can be approximated by taking a weighted average 

of the difference between the accuracy and the average of each bin 

[25]:  
M  

  ECEconf(Bm)|,  

(10)  
m=1  

where n is the number of samples. The difference between acc and 

conf is called calibration gap and is represented by the red bars of a 

reliability plot (Figure 7, 8, 9, 10, 11 in the Appendix).  

Table III reports the improvement in Expected Calibration Error 

when the output is calibrated using Temperature Scaling (we 

implement this method in python leveraging [18]). This procedure 

improves significantly the ECE for all the models but the Physionet 

one. This is due to the fact that the test set of this model is the smallest 

(only 300 observations). Overall, the five models prove to be very well 

calibrated on average and thus their predictions should be considered 

reliable.  
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TABLE III DELTA ECE 

CALIBRATION.  
 Chap-Tian  0.004  0.0008  

 Phys-Chap  0.024  0.020  

 

IV. RESULTS  

In this section we propose the out of sample performances of the 5 

models that we have trained following the pipeline explained above, 

and the corresponding 10 most important features. From Table IV it is 

possible to observe the strong perfomance of the model trained on 

Physionet data (Weighted Average F1 Score 0.94). Table V is useful to 

inspect where the model is making errors. In this case, the models 

makes the most errors in the Other and Noisy class. The confusion 

associated to the Other class comes from the definition of it, as it 

includes different (non-specified) heart anomalies, so that it is tough 

for the model to learn the exact characteristics of it. On the other 

hand, when the model is wrong and predicts Noisy, it doesn’t lead to 

a harmful decision, given that after a Noisy prediction, the model 

would ask to record another signal, which would then be classified 

another time. Figure 2 displays the most important features for this 

model. The CSI index is feature that explains the most when a signal is 

labeled as Normal or Other, and in fact is a popular index exploited in 

the literature [31] to identify anomalies in an ECG. The proportion of 

R-R intervals which are longer than 50 seconds is the feature that has 

the highest explanatory power for the AF label, which is in line with 

the fact that a person having Atrial Fibrillation has an irregular heart 

beat. Finally, The Spectral Centroid feature is able to capture quick 

variations in the recording, making it an ideal feature to spot a Noisy 

signal. In a real setting, this model can be particularly useful because 

of the presence of the Other class, which is meant to represent more 

generally the characteristics of a ECG signal of a problematic heart 

condition. In fact, in the occurrence of an undefined or new heart 

condition, this model would be able to detect it, so that the patient 

can be directed to a specialized professional to further investigate and 

cure the problem.  

TABLE IV  

METRICS TABLE PHYSIONET.  

Description  Precision  Recall  F1 Score  Count  

Normal  0.97  0.97  0.97  150  

AF  0.98  0.92  0.95  50  

Other  0.97  0.89  0.93  70  

Noisy  0.75  1.00  0.86  30  

Accuracy      0.94  300  

Arith. Avg  0.92  0.94  0.93  300  

Weight. Avg  0.95  0.94  0.94  300  

TABLE V  

CONFUSION MATRIX FOR THE MODEL TRAINED ON PHYSIONET DATA.  

Physionet  Pred. Normal  Pred. AF  Pred. Other  Pred. Noisy  

True Normal  145  0  0  5  

True AF  0  46  2  2  

True Other  4  1  62  3  

True Noisy  0  0  0  30  

Table VI shows that the model trained on Chapman data is extremely  

  

Fig. 2. Feature Importance Physionet.  

TABLE II MODEL AND  

DATA SUMMARY.  

Model  Additional Features  Patients  Labels  Training  Testing  Signal Len.  Sampl. Freq. 

Physionet  None  8828  Norm, AF, Other, Noisy  8528  300  9-61s  300Hz  

Chapman  Age, Gender, T-Offset, P-Offset  
VentricularRate, AtrialRate, QRSDuration  
QTInterval, QTCorrected, RAxis, TAxis  
TOffset, QRSCount, QOnset, QOffset  

10646  Norm, AF, Tachy, Brady  7452  3194  10s  500Hz  

Tianchi  Age, Gender  20019  Norm, AF, Tachy, Brady, Arrhy  14013  6006  10s  500Hz  

Chapman-Tianchi  None  28080  Norm, Tachy, Brady  8421  19659  10s  500Hz  

Physionet-Chapman  

  

None  10484  Norm, AF  6034  4450  9-61s  300-500Hz  

predictions with confidence of 0.9, 90 of them should be correct. Paper Uncalibrated Calibrated While perfect calibration is not 

usually achievable in a real setting, Physionet [12]   0.030 0.035 there are metrics to 

quantify how reliable a model is. In our work, we  
Chapman [1]  0.026  0.006 follow the 

procedure highlighted in [15] to calibrate each model’s  
Tianchi [2]  0.007  0.001 output using 

Temperature Scaling (the details of which can be found  
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accurate over the four classes under observation (Weighted Average 

F1 Score 0.96). Table VII shows where the model tends to predict 

incorrectly. In this case, the model is pretty consistent over the four 

classes, with most of the errors being a mislabeling between AF and 

Tachycardia. However, anytime the model predicts anything different 

from Normal, we suggest that the patient is visited from a trained 

doctor who can assist the patient. Figure 3 displays the most 

important features for this model. Atrial Rate is the most important 

feature to identify a Normal signal, and indeed this is an important 

factor to consider when analyzing an ECG. In the same fashion, The 

Ventricular Rate, is the key feature to identify Bradycardia and 

Tachycardia. These two features are available directly in the Chapman 

data, but are highly correlated with some of the features extracted 

with our pipeline (e.g Beat per Minute). Finally, MCVNN is the best 

feature to identify Atrial Fibrillation. It is calculated as the median 

absolute deviation of the horizontal R-R distances divided by the 

median of the absolute differences of successive horizontal RR 

distances. The predictive power of these features come from their 

ability to capture anomalies in successive heart beats.  

TABLE VI  

METRICS TABLE CHAPMAN.  

Description  Precision  Recall  F1 Score  Count  

Bradychardia  0.98  0.99  0.99  1167  

Normal  0.96  0.97  0.97  667  

AF  0.93  0.91  0.92  668  

Tachycardia  0.95  0.95  0.95  692  

Accuracy      0.96  3194  

Arith. Avg  0.96  0.95  0.96  3194  

Weight. Avg  0.96  0.96  0.96  3194  

TABLE VII  

CONFUSION MATRIX FOR THE MODEL TRAINED ON CHAPMAN DATA.  

Chapman  Pred. Brady  Pred. Normal  Pred. AF  Pred. Tachy  

True Brady  1157  2  8  0  

True Normal  4  646  14  3  

True AF  12  16  607  33  

True Tachy  3  6  25  658  

Table VIII shows that the model trained on Tianchi has almost very 

accurate performance (Weighted Average F1 Score 0.99). Table IX 

shows that the model indeed makes almost no mistakes in its 

predictions. The errors associated to the Arrhythmia and AF classes 

come from the scarcity of such labels in the data. Moreover, given that 

AF is a form of Arrhythmia, it is not clear the difference between the  

  

Fig. 3. Feature Importance Chapman.  

two in the data, so that it is reasonable that the model is missing some 

of them. Figure 4 displays the most important features for this model. 

Beat per Minute is the feature that has the highest predicting power 

for the Normal and Tachycardia classes, which is related to the fact 

that Tachycardia is associated to an increased heart rate. Similarly, the 

median horizontal distance between successive R-R peaks is the best 

feature to identify Bradycardia, which is associate to a slow heart rate. 

Arrhythmia mostly relies on TINN, which is an approximation of the 

distribution of successive R-R intervals, for its identification. Finally, AF 

is identified through CVSD: the root mean square of the sum of 

successive differences in R-R intervals, divided by the mean of their 

lengths.  

TABLE VIII  

METRICS TABLE TIANCHI.  

Description  Precision  Recall  F1 Score  Count  

Normal  0.98  0.99  0.99  2850  

Tachycardia  1.00  1.00  1.00  1469  

Bradycardia  0.99  1.00  0.99  1579  

Arrhythmia  0.83  0.51  0.63  76  

AF  0.96  0.72  0.82  32  

Accuracy      0.99  6006  

Arith. Avg  0.95  0.84  0.89  6006  

Weight. Avg  0.99  0.99  0.99  6006  

TABLE IX  

CONFUSION MATRIX FOR THE MODEL TRAINED ON TIANCHI DATA.  

Tianchi  Pred. Norm  Pred. Tachy  Pred. Brady  Pred. Arr  Pred. AF  

True Norm  2834  1  7  8  0  

True Tachy  5  1464  0  0  0  

True Brady  7  0  1572  0  0  
True Arr  35  0  1  39  1  
True AF  7  1  1  0  23  

Table X shows that our model is able to achieve a very accurate 

performance also when evaluated on a dataset coming from a 

different source (Weighted Average F1 Score 0.99). In this case, we 

train on the Chapman data and evaluate on the Tianchi data. Table XI 

clearly shows that the model is reliably predicting across labels, with 

very few errors in the whole dataset. Figure 5 displays the most 

important features for this model. As one would expect, Beat per 

Minute and the median horizontal distance between successive R-R 

peaks are the most important features to identify the three labels 

under observation. In fact, the symptoms of Tachycardia and 

Bradycardia are increased and decreased heart rate, and these two 

features are a great proxy for it.  
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Fig. 4. Feature Importance Tianchi.  

TABLE X  

METRICS TABLE FOR THE CHAPMAN-TIANCHI MODEL.  

Description  Precision  Recall  F1 Score  Count  

Normal  1.00  0.99  0.99  9500  

Tachycardia  0.99  1.00  1.00  4895  

Bradycardia  0.98  1.00  0.99  5264  

Accuracy      0.99  19659  

Arith. Avg  0.99  0.99  0.99  19659  

Weight. Avg  0.99  0.99  0.99  19659  

TABLE XI  

CONFUSION MATRIX FOR THE CHAPMAN-TIANCHI MODEL.  

Chap-Tian  Pred. Normal  Pred. Tachy  Pred. Brady 

True Normal  9375  26  99  

True Tachy  11  4883  1  

True Brady  20  1  5243  

  

Fig. 5. Feature Importance model trained on Chapman and evaluated on 
Tianchi.  

Finally, Table XII shows that the features that we extract are general 

enough to train a model that achieves high accuracy even when the 

training and testing datasets have very different characteristics 

(Weighted Average F1 Score 0.93). In fact, the Physionet data is 

recorded from a wearable device at 300 Hz and describes the 

characteristics of American people, while the Chapman data is 

recorded in a professional setting at 500 Hz (twelve leads are recorded 

but we only analyze lead II, as explained in Section II) and comes from 

the Chinese population. In this case, we train on the Physionet data 

and evaluate on the Chapman data. Table XIII shows balance in the 

errors between the two classes. Figure 6 displays the most important 

features for this model. Similarly to the model trained only on the 

Physionet data, the proportion of R-R intervals which are longer than 

50 seconds is the feature that has the highest explanatory power for 

the AF label.  

TABLE XII  

METRICS TABLE FOR THE PHYSIONET-CHAPMAN MODEL.  

Description  Precision  Recall  F1 Score  Count  

Normal  0.94  0.92  0.93  2225  

AF  0.92  0.94  0.93  2225  

Accuracy      0.93  4450  

Arith. Avg  0.93  0.93  0.93  4450  

Weight. Avg  0.93  0.93  0.93  4450  

TABLE XIII  

CONFUSION MATRIX FOR THE PHYSIONET-CHAPMAN MODEL.  

Phys-Chap  Pred. Normal  Pred. AF  

True Normal  2036  189  

True AF  130  2095  

  

Fig. 6. Feature Importance model trained on Physionet and evaluated on 
Chapman.  

The variance in performance across datasets (0.93-0.99) could be 

interpreted as confusing and potentially harming in a real setting. 

However, it is important to understand that such variance comes from 

the wide difference between the datasets. For example, in the case of 

the Chapman-Tianchi model (Weighted Average F1 Score 0.99), the 

labels are easier to predict, as it is known that Tachycardia and 

Bradycardia are easier to distinguish among themselves and with a 

Normal ECG. On the other hand, in the case of the Physionet model 

(Weighted Average F1 Score 0.94), the labels observed are much more 

challenging to predict and a drop in performance is to be expected. All 

the models trained in this work achieve a predictive performance 

similar or better than the ones that are presented in the 

corresponding original papers, thus confirming that it is not always 

possible to achieve a perfect result.  

V. REAL-TIME ANALYSIS  

The ultimate goal of our work is not to substitute the precious role 

of specialized professionals, but to provide an aid to them, accurately 

screening people with possible heart conditions which can be directed 

to such expert for deeper analysis. Thus, a key role in the viability and 

usefulness of our tool is its time complexity, meaning how long it takes 

to make a prediction when a new ECG is recorded. Table XIV 

summarizes the time required (in milliseconds) by our models to 
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complete the four main steps of the real-time evaluation: pre-

processing (Step 1), extraction of features from groups 1,2 and 3 (Step 

2), extraction of TSFRESH features (Step 3), model prediction (Step 4). 

We also provide the 95% Confidence Intervals for each measurement. 

The Physionet dataset is composed of signals of different length, thus 

we divide these signals in three groups (less than 20s, between 20 and 

40s and more than 40s) in order to have a deeper understanding of 

how fast the models are with longer recordings. The time complexity 

of the cross-dataset models is not present in the table because their 

features are directly coming from the three datasets at the core of our 

work. Table XIV shows that once a new ECG is available, our model is 

able to clean it, extract the required features and make a prediction in 

less than 30 milliseconds for any of the signal present in the data that 

we analyze (the longest is 61 seconds). This experiment produces 

sound evidence that our method can be used in a real-time setting. 

For example, we can comfortably deploy it on a wearable device 

displaying ECG-based predictions every 50 milliseconds, i.e., 20 times 

per second.  

VI. LIMITATIONS  

The datasets that we have worked on are proprietary data of 

external companies, thus we don’t have access to its entirety, 

preventing from making an objective comparison to evaluate directly 

the performances of our model. However, assuming that the original 

data is randomly split between training and testing set, meaning that 

there is no structural difference between the feature characteristics of 

the two, our Out-of-Sample evaluation provides a reasonable estimate 

of how the models would perform on the hidden testing sets. As 

summarized in table XV, it is evident that the models achieve 

predictive performances that are better or very similar to those from 

the original papers.  

TABLE XV  

PERFORMANCE COMPARISON (F1-SCORE).  

Paper  Manuscript  Original Work  

Physionet [12]  0.93  0.83  

Chapman [1]  0.96  0.97  

Tianchi [2]  0.99  0.99  

For the Physionet model, we report an average F1 Score of 0.93, 

while the winning model in the 2017 competition achieved only 0.83. 

For the Chapman data, we achieve average F1 Score of 0.96, while the 

original paper achieves 0.97. However, in our experiment we keep 

only one of the 12 ECG leads and we extract only 110 features, so that 

the overall process is almost instantaneous. For the Tianchi data, we 

achieve a weighted average F1 Score of 0.99, which is in line with the 

results of the original paper for the labels under consideration. In 

addition to this, we also propose two experiments in which we train 

and evaluate models across datasets coming from different sources 

and having different characteristics, achieving Average F1 Score of 

0.99 and 0.93. To our knowledge, there is no other work in the 

literature that performs a similar analysis.  

In an ideal world, having the same set of experts labeling all the ECG 

signal would be the most accurate and fair way to assess final 

performance. However, accessing clinical data is particularly 

challenging, and a cross-country labeling of this kind would be tough 

to achieve. In this manuscript the set of experts is different in each 

dataset. While we agree that this issue constitutes a limitation, we also 

believe that our work, based on the assumptions that labeling 

standards are equivalent across countries and hospitals, presents 

sound evidence that this is not far from true. On the contrary, the fact 

that our models generalize so well on such different populations is a 

good indicator that the labeling standards are very similar across 

datasets.  

VII. CONCLUSION  

In this manuscript we propose a novel methodology to identify 

heart anomalies from a newly recorded ECG. The predictive process 

can be summarized as: signal pre-processing, feature extraction, 

model training, calibration and evaluation. We design a feature  

APPENDIX  

FEATURES  

All the 5 Machine Learning models at the basis of this work are 

trained on a common set of 110 features extracted according to the 

procedure described in Section III-D. The extracted features can be 

divided in four groups: time domain, nonlinear domain, distance 

based and time series characteristics. The features from the first two 

groups are extracted through the implementation by Neurokit [23]. 

Those from the third group are calculated once we detect the P,Q,R,S,T 

peaks and waves locations in the signal. The time series characteristics 

are extracted through the TSFRESH implementation [11]. Below we 

report the complete list of 110 features that are used by the 5 models 

for their predictions.  

A. Time Domain  

We select 12 of the initial 13 features for our final model:  

• CVNN, The standard deviation of the RR intervals divided by the 

mean of the RR intervals  

• CVSD, The root mean square of the sum of successive differences  

  

 TABLE  XIV  TIME  

COMPLEXITY ANALYSIS.  

Dataset  Length  Pre-Processing  Features Group 1,2,3  Features TSFRESH  Prediction  Total  

Physionet  ≤ 20s  2.29ms (2.25, 2.34)  16.70ms (16.79, 17.21)  1.05ms (1.03, 1.08)  4.00ms (3.98, 4.01)  24.34ms (24.12, 24.56)  

Physionet  20-40s  2.42ms (2.40, 2.44)  19.16ms (19.09, 19.22)  1.50ms (1.49, 1.51)  3.95ms (3.93, 3.96)  27.02ms (26.95, 27.09)  

Physionet  ≥ 40s  2.47ms (2.46, 2.49)  19.66ms (19.58, 19.74)  1.64ms (1.63, 1.65)  3.95ms (3.94, 3.96)  27.72ms (27.64, 27.81)  

Chapman  10s  2.19ms (2.18, 2.20)  17.09ms (17.05, 17.14)  1.00ms (1.00, 1.01)  4.53ms (4.52, 4.55)  24.87ms (24.82, 24.93)  

Tianchi  10s  2.32ms (2.31, 2.33)  17.69ms (17.65, 17.72)  0.98ms (0.98, 0.99)  4.00ms (4.00, 4.01)  25.36ms (25.32, 25.40)  
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 extraction pipeline that crafts 110 features, which we leverage 

to train five different models on a collection of three datasets. 

Our models prove to have extremely strong performance when 

making prediction on unseen data, but are also able to 

generalize across datasets with ECGs recorded in different 

settings, and with population having inherently different 

characteristics. In addition, our approach has showed to be 

effective for very different kind of heart abnormalities: Normal, 

Atrial Fibrillation, Tachycardia, Bradycardia, Other 

(nonspecified), Arrhythmia and Noisy. In order to further 

improve our models’ reliability, we calibrate our models using 

Temperature Scaling to minimize the Expected Calibration 

Error. Our work confirms that directly analyzing the 

characteristics of the QRS complex leads to very accurate 

predictions. This can have an enormous potential impact on 

the lives of people suffering from heart diseases. In fact, we 

envisioned our work to be applied in a real time setting, with a 

wearable device that can constantly monitor the heartbeat of 

the patients at risk. By designing our experiments to analyze a 

single lead of a common ECG, we have a good approximation 

of the input of a given wearable, thus achieving our initial aim 

without lowering the predictive power of our algorithms. We 

perform extensive analysis to assess the viability of our models 

in a real-time setting, and we find that for signals shorter than 

a minute (the average ECG length is 30 seconds) it takes less 

than 30 milliseconds from the moment in which the signal is 

recorded to the final model prediction. As a result, our models 

prove to be a fast and reliable aid in the important task of 

detecting heart anomalies from the ECGs of patients who can 

then be directed to trained experts for further analysis.  

               divided by the mean of the RR intervals 

• MCVNN, The median absolute deviation of the RR                

intervals divided by the median of the absolute differences of     

their successive differences 

• MadNN, The median absolute deviation of the RR intervals 

• MeanNN, The mean of the RR intervals 

• MedianNN, The median of the absolute values of the successive 

differences between RR intervals 

• RMSSD, The square root of the mean of the sum of successive 

differences between adjacent RR intervals 

• SDNN, The standard deviation of the RR intervals 

• SDSD, The standard deviation of the successive differences 

between RR intervals 

• TINN, An approximation of the RR interval distribution 

• pNN20, The proportion of RR intervals greater than 20ms, out 

of the total number of RR intervals 

• pNN50, The proportion of RR intervals greater than 50ms, out 

of the total number of RR intervals 

B. Nonlinear Domain  

We select all the initial 7 features for our final model:  

• CSI, The Cardiac Sympathetic Index [31]  

• CSI Modified, The modified CSI [17]  

• CVI, The Cardiac Vagal Index [31]  

• SD1, An index of short-term RR interval fluctuations  

• SD2, An index of long-term RR interval fluctuations  

• SD2SD1, Ratio between short and long term fluctuations of the RR 

intervals  

• SampEn, The sample entropy measure of Heart Rate Variability  

C. Distance Based  

We select 40 of the initial 109 features for our final model:  

• BPM, Beats Per Minute  

• IBI, Inter Beat Interval  

• Average difference between subsequent R peaks  

• Average squared difference between subsequent R peaks  

• Average height of R peak  

• Median difference between subsequent R peaks  

• Median squared difference between subsequent R peaks  

• Median height of R peak  

• Average, Median, Standard Deviation and Minimum of the horizontal 

distance between P and Q  

• Average, Median and Standard Deviation of the horizontal distance 

between P and R  

• Average, Median and Standard Deviation of the horizontal distance 

between P and S  

• Average, Median and Minimum of the horizontal distance between 

P and T  

• Standard Deviation and Minimum of the horizontal distance 

between Q and R  

• Average of the horizontal distance between Q and T  

• Standard Deviation of the horizontal distance between R and S • 

Average of the horizontal distance between R and T  

• Average, Median and Standard Deviation of the vertical distance 

between P and R  

• Median of the vertical distance between P and T  

• Average and Median of the vertical distance between Q and R  

• Average of the vertical distance between Q and S  

• Average, Median and Minimum of the vertical distance between R 

and S  

• Average, Median, Standard Deviation and Minimum of the vertical 

distance between R and T  

D. Time Series Characteristics  

We select 51 of the initial 742 features for our model:  

• Abs energy, The absolute energy of the time series  

• Agg autocorrelation, Calculates the aggregated variance of the signal  

• Agg linear trend (4 sets of parameters), Calculates a linear 

leastsquares regression different aggregated values of the time 

series • Augmented dickey fuller, A hypothesis test which checks 

whether a unit root is present  

• Autocorrelation (2 sets of parameters), Calculates the 

autocorrelation of the signal  

• Change quantiles (13 sets of parameters), Fixes a corridor given by 

the quantiles ql and qh of the distribution of xv  

• Cid ce (2 sets of parameters), An estimate for a time series 

complexity  

• Energy ratio by chunks (2 sets of paramters), Sum of squares of 

chunks over the whole series.  

• Fft aggregated, The spectral centroid (mean) of the absolute fourier 

transform spectrum  
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• Fft coefficient (3 sets of parameters), Calculates the fourier 

coefficients of the one-dimensional discrete Fourier Transform for 

real inputs  

• Friedrich coefficients, Coefficients of polynomial, which has been 

fitted to the deterministic dynamics of Langevin model  

• Index mass quantile, Calculates the relative index i where q% of the 

mass of the time series x lie left of i.  

• Kurtosis, The adjusted Fisher-Pearson standardized moment 

coefficient G2  

• Large standard deviation, Boolean variable denoting if the standard 

dev of x is higher than a treshold  

• Linear trend attr, Calculates a linear least-squares regression for the 

values of the time series versus the sequence from 0 to length of the 

time series minus one  

• Quantile (4 sets of paramters), Calculates the q quantile of x  

• Ratio beyond r sigma (8 sets of parameters), Ratio of values that are 

more than r ∗ std(x) away from the mean of x.  

• Standard deviation, Returns the standard deviation of x  

• Time reversal asymmetry statistic  

• Variance, Returns the variance of x  

RELIABILITY DIAGRAMS  

In this section we propose the reliability plots for the calibrated 

output of each of the five models we train. The reliability plots are 

calculated through the python implementation [18] of the 

methodology presented in [15].  

A perfectly calibrated plot would have a reliability plot that is 

exactly corresponding to the 45 degrees line, where accuracy and 

confidence are equal. In the plots, the dark red gap indicates that the 

confidence of the model is lower than its accuracy, meaning that the 

model is under-confident in that bin, while the light red gap indicates 

the opposite, meaning that it is over-confident. For each model we 

display a histogram to summarize the representation of each 

confidence level across 10 bins in the 0-1 probability interval, and the 

corresponding reliability diagram. Figure 7 presents the reliability 

plot of the Physionet model, having ECE = 0.035. The model is slightly 

under-confident in the 0.6-0.9 interval and is overconfident in the 

0.50.6 one. Again, this is due to the small size of the test set of this 

model (300 samples).  

 

Fig. 7. Reliability Diagram Physionet.  
0 

Figure 8 presents the reliability plot of the Chapman model, 

having ECE = 0.006. This model is almost perfectly calibrated, 

and is only slightly over-confident in the 0.4-0.6 and 0.7-0.9 

intervals.  

 

Figure 9 presents the reliability plot of the Tianchi model, 

having ECE = 0.001. Also this model has almost perfect 

calibration and is slightly under-confident in the 0.3-0.4 

interval.  

Figure 10 presents the reliability plot of the model trained 

on Chapman and evaluated on Tianchi, having ECE = 0.0008. 

This model has the lowest calibration error and is basically 

perfect in its predictions.  

Figure 11 presents the reliability plot of the model trained 

on Physionet and evaluated on Chapman, having ECE = 0.02. 

Despite being the most challenging model to train, as the 

training and testing datasets come from different countries, 

hospitals and have different recording standards, this model is 

still remarkably well calibrated.  
                         Fig. 9. Reliability Diagram Tianchi.  
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                      Fig. 10. Reliability Diagram Chapman-Tianchi.  
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