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ABSTRACT 

Artificial Intelligence (AI) applications in Smart Agricultural Facilities (SAF) often face 

challenges related to explainability, limiting farmers' ability to fully utilize their capabilities. 

This study addresses this gap by proposing a model that integrates eXplainable Artificial 

Intelligence (XAI) with Predictive Maintenance (PdM). The model aims to offer predictive 

insights and explanations across four key dimensions: data, model, outcome, and end-user. 

This approach represents a paradigm shift in agricultural AI, transforming how these 

technologies are interpreted and applied. The proposed model outperforms existing 

approaches, demonstrating notable improvements in performance. Specifically, the Long-

Short-Term Memory (LSTM) classifier shows a 5.81% improvement in accuracy, while the 

eXtreme Gradient Boosting (XGBoost) classifier achieves a 7.09% higher F1 score, a 10.66% 

boost in accuracy, and a 4.29% increase in Receiver Operating Characteristic-Area Under the 

Curve (ROC-AUC). These results suggest that the model can enhance maintenance 

predictions in real-world agricultural settings. Additionally, this study offers valuable insights 

into data purity, both global and local explanations, and counterfactual scenarios in the 

context of PdM for SAF. By emphasizing explainability alongside traditional performance 

metrics, the study advances AI applications in agriculture. It also encourages future research 

in areas like multi-modal data integration and the implementation of Human-in-the-Loop 

(HITL) systems, which can improve AI effectiveness while addressing ethical considerations 

such as Fairness, Accountability, and Transparency (FAT) in agricultural AI. 

I.INTRODUCTION 

The integration of Artificial Intelligence (AI) 

in Smart Agricultural Facilities (SAF) has 

the potential to revolutionize the agriculture 

industry by optimizing operations, 

improving resource management, and 

enhancing productivity. Predictive 

Maintenance (PdM) is one of the most 

promising applications of AI in this context, 

as it enables the early detection of 

equipment failures, thereby reducing 

downtime and maintenance costs. However, 

despite its effectiveness, the adoption of AI-

based PdM systems in agriculture is often 

hindered by a significant challenge: the lack 

of explainability. Farmers and operators, 

who may not possess deep technical 

knowledge, struggle to understand the 

decision-making processes of AI systems, 
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making it difficult to trust and effectively 

utilize these technologies. 

To address this challenge, the field of 

eXplainable Artificial Intelligence (XAI) 

has emerged as a crucial area of research, 

aiming to make AI models more transparent 

and interpretable. In the context of 

predictive maintenance, explainability is 

particularly important, as it helps users 

understand why certain  

maintenance actions are recommended, 

allowing them to make informed decisions. 

This study introduces an explainable AI 

model specifically designed for PdM in 

Smart Agricultural Facilities, which 

integrates both predictive insights and 

explanations. The model provides clarity 

across four key dimensions: data, model, 

outcome, and end-user, ensuring that 

stakeholders can comprehend the rationale 

behind AI-driven predictions. 

By combining explainability with predictive 

maintenance, this model aims to enhance 

user trust and engagement, bridging the gap 

between complex AI algorithms and the 

practical needs of farmers. In addition to 

improving the interpretability of AI models, 

the study demonstrates how this model 

improves predictive performance, offering 

measurable improvements in accuracy, F1 

score, and other evaluation metrics. 

Furthermore, the research highlights the 

importance of incorporating ethical 

considerations, such as Fairness, 

Accountability, and Transparency (FAT), 

into the deployment of AI in agriculture. 

The remainder of this paper discusses the 

design and implementation of the 

explainable AI model, evaluates its 

performance in comparison to existing 

approaches, and outlines future directions 

for integrating multi-modal data and 

Human-in-the-Loop (HITL) systems to 

further enhance AI-based predictive 

maintenance in Smart Agricultural Facilities. 

Through this work, we aim to advance the 

application of AI in agriculture, ensuring 

that AI technologies are not only effective 

but also accessible and trustworthy for 

farmers. 

II.LITERATURE REVIEW 

This study conducted an extensive literature 

review to critically examine advanced AI-

driven Predictive Maintenance (PdM) 

techniques, with a specific focus on 

eXplainable Artificial Intelligence (XAI) 

models. The goal was to assess the potential 

of XAI in enhancing maintenance practices 

by providing clearer insights into model 

decisions. The review aimed to highlight the 

strengths, limitations, and practical 

applicability of various XAI approaches in 

PdM, providing a comprehensive overview 

of the current state and future directions for 

integrating XAI in agricultural PdM systems. 

A. Predictive Maintenance Approaches 

The review identified three key PdM 

approaches: (1) anomaly detection, (2) 

prognostics, and (3) diagnostics [21]. 

Anomaly detection focuses on identifying 

unusual patterns in data, while prognostics 

predict future system performance. 

Diagnostics, on the other hand, aim to 

identify current issues based on performance 

analysis. Among the studies reviewed, 

eleven studies concentrated on prognostics 

[30], [31], [32], [33], [34], [35], [36], [37], 

[38], [39], [40], three focused on anomaly 

detection [41], [42], [43], and two combined 

both prognostics and diagnostics [40], [44]. 
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Notably, none of the studies exclusively 

concentrated on diagnostics, highlighting a 

significant gap in the existing literature. 

Future research should explore how 

combining anomaly detection and 

prognostics can lead to more effective 

diagnostic capabilities, improving the 

overall robustness and efficiency of PdM 

systems in Smart Agricultural Facilities 

(SAF). 

B. Deep Learning and Machine Learning 

in Predictive Maintenance 

For prognostics, techniques such as 

Recurrent Neural Networks (RNNs) and 

Long-Short-Term Memory (LSTM) 

networks emerged as highly effective, 

achieving an impressive 90.07% accuracy 

[33]. In predicting Remaining Useful Life 

(RUL), more advanced models like 

Bidirectional Recurrent Neural Networks 

(Bi-RNNs) and LSTMs pushed the 

boundaries, reaching 96.15% accuracy [30]. 

LSTMs, in particular, have shown promise 

in anomaly detection tasks, often in 

combination with One-Class Support Vector 

Machines (OC-SVM), which help 

significantly reduce false alarms [38]. 

However, OC-SVMs struggle with 

supervised problems and may not always be 

applicable in all scenarios. 

Another study that applied Random Forest 

(RF) in prognostics incorporated AutoML, 

demonstrating versatility, particularly in 

component-level analysis [32], [36]. 

However, while AutoML has democratized 

machine learning by automating model 

selection, its generalist approach limits the 

ability to optimize specific models for 

particular tasks [45]. Ensemble Learning 

(EL) techniques also proved valuable in the 

prognostics domain, particularly within 

manufacturing industries [36]. Despite the 

complexity of other approaches like 

Balanced K-Star, Multi-Layer Perceptron 

(MLP), Extreme Learning Machine (ELM), 

and Transfer Learning (TL), they provide 

viable alternatives for PdM. Additionally, 

Deep Convolutional Autoencoders were 

explored in some studies for their potential 

in predictive maintenance [34], [35], [40], 

[46]. While diagnostics in PdM remains 

underexplored, the few studies that have 

touched on it suggest that further attention is 

needed in this area [40]. 

C. Explainable Artificial Intelligence 

In the rapidly evolving fields of deep 

learning (DL) and machine learning (ML), 

sophisticated models have become 

increasingly prevalent across industries such 

as healthcare, finance, and agriculture. 

However, the complexity of these models 

often obscures their decision-making 

processes, raising significant concerns about 

their transparency and interpretability [23]. 

This lack of clarity has driven the need for 

explainable AI (XAI), a concept that goes 

beyond simple transparency to make the 

decision-making of DL and ML models 

understandable to both experts and non-

experts alike. Explainability involves 

breaking down the inner workings of these 

models, helping users comprehend how 

decisions are made and fostering trust in AI 

systems. This need for explainability 

encompasses multiple facets, each of which 

plays a crucial role in enhancing the 

reliability and understanding of DL models. 

1) Dimensions of Explainability 

A review of the literature identified four 

primary dimensions of explainability: (1) 

data, (2) model, (3) outcome, and (4) end-
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user. The data dimension focuses on the 

limitations and potential of the data used in 

AI models [22]. Despite its importance, 

many studies failed to assess whether the 

data was sufficient to support the insights 

sought, highlighting the need for further 

research into the data capabilities in 

predictive maintenance for Smart 

Agricultural Facilities (SAF). The model 

dimension investigates how input data 

influences model predictions [22]. Often, 

assumptions of feature independence are 

made, which can introduce bias. While most 

studies addressed the model dimension, a 

few also considered both the model and 

outcome dimensions [30], [31], [32], [36], 

[39]. However, only two studies specifically 

focused on outcome explainability [34], [37], 

pointing to a research gap in understanding 

the reasoning behind individual predictions 

made by AI models. Addressing this gap 

could enhance both transparency and 

decision-making in AI systems. The end-

user dimension, which tailors explanations 

to non-technical users [47], was largely 

overlooked in the literature, highlighting the 

need for research that makes AI systems 

more accessible to a broader audience. 

2) Approaches to Explainability 

From the reviewed studies, six primary 

approaches to explainability emerged: (1) 

local explainability, (2) global explainability, 

(3) model-specific, (4) model-agnostic, (5) 

model-centric, and (6) data-centric 

approaches. Local explainability provides 

clarity on individual predictions, while 

global explainability aims to reveal the 

overall behavior of the model. Although two 

studies explored both local and global 

explainability [33], [41], none focused 

exclusively on global explainability, 

indicating a significant research gap. 

Thirteen studies delved into local 

explainability alone [30], [31], [32], [34], 

[35], [36], [37], [38], [39], [40], [42], [43], 

[44]. 

Model-specific approaches are tailored to 

particular AI models, whereas model-

agnostic methods are applicable across 

different types of models. Ten studies used 

model-agnostic approaches [30], [31], [32], 

[34], [36], [38], [40], [42], [43], [44], while 

three focused on model-specific techniques 

[33], [35], [37]. Only two studies combined 

both approaches [39], [41]. Model-centric 

approaches analyze the relationships 

between inputs and outputs within models, 

while data-centric approaches emphasize the 

quality and relevance of the data [47]. All 

studies in the review employed model-

centric approaches, while data-centric 

strategies were rarely explored, indicating 

an important area for further research. 

D. Explainable Artificial Intelligence for 

Predictive Maintenance 

Several XAI techniques have been applied 

to predictive maintenance, with SHapley 

Additive exPlanations (SHAP) standing out 

for its ability to clarify the impact of 

features on predictions, particularly in 

reducing false alarms [38], and improving 

diagnostic interpretation [40], [44]. Despite 

its usefulness, SHAP’s complexity can be a 

barrier to its broader application. Similarly, 

Local Interpretable Model-agnostic 

Explanations (LIME) has been used to 

provide localized explanations for 

predictions, particularly in anomaly 

detection for transportation systems [41]. 

While LIME excels at explaining individual 

predictions, its focus on local explanations 

limits its utility for providing a 
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comprehensive understanding of the entire 

model. 

Layer-wise Relevance Propagation (LRP), 

typically used in deep learning models, 

offers detailed insights into prediction 

influences [33]. While LRP has 

demonstrated effectiveness in its 

applications, it is highly model-specific. A 

comparison of LIME, SHAP, and Explain 

Like I Am Five (ELI5) revealed differences 

in the efficiency and feature attribution of 

each method [39]. LIME was found to be 

efficient, while ELI5 provided more 

intuitive explanations, though it lacked the 

versatility to work across different models. 

Counterfactual Explanations (CFE), which 

focus on generating "what-if" scenarios, 

have gained popularity for making AI 

systems more acceptable, especially for 

non-experts [34], [36]. 

III.SYSTEM ARCHITECTURE  

 

 

Fig1.System Architecture 

The system architecture for the proposed 

Explainable Artificial Intelligence (XAI) 

model for Predictive Maintenance (PdM) in 

Smart Agricultural Facilities (SAF) is 

structured to ensure efficient data flow, 

reliable predictive capabilities, and 

transparent insights for stakeholders. This 

architecture consists of several layers that 

integrate AI, data processing, and user 

interaction, each contributing to the overall 

functionality and transparency of the system. 

IV.METHODOLOGY 

Data Collection Layer 

The Data Collection Layer is responsible for 

gathering real-time data from various 

sources within the agricultural facility. This 

includes data from Internet of Things (IoT) 

sensors, such as temperature, humidity, soil 

moisture, and machinery health sensors. 

These sensors continuously monitor critical 

parameters within the facility, providing 

essential data for predictive maintenance 

tasks. The data is processed by edge devices 

before being transmitted to the cloud, 

reducing latency and ensuring that only 

relevant data is sent for further analysis. 

Additionally, external data sources, such as 

weather forecasts and historical 

maintenance records, are integrated into the 

system to enrich the predictions. 

Data Preprocessing Layer 

Once the data is collected, it enters the Data 

Preprocessing Layer, where it undergoes 

cleaning, normalization, and feature 

extraction. Raw data often contains noise, 

missing values, or inconsistencies that can 

affect the performance of predictive models. 

This layer handles these issues by filling in 

missing values, standardizing data units, and 

extracting useful features, such as 

identifying patterns that indicate machine 

wear or potential failures. These 

preprocessed data are then formatted for 

analysis by machine learning models, 

ensuring high-quality input that facilitates 

accurate predictions. 
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Predictive Maintenance Model Layer 

The core of the system lies in the Predictive 

Maintenance Model Layer, where machine 

learning and deep learning algorithms are 

applied to predict potential failures and 

schedule maintenance. This layer utilizes 

advanced models like Long-Short-Term 

Memory (LSTM) networks for time-series 

analysis of sensor data and eXtreme 

Gradient Boosting (XGBoost) for feature-

based predictions. The system forecasts the 

Remaining Useful Life (RUL) of machinery, 

predicts failures, and provides 

recommendations for maintenance activities. 

Anomaly detection algorithms within this 

layer help to flag unusual patterns, which 

can indicate early signs of failure or 

inefficiencies. 

Explainability Layer 

The Explainability Layer ensures that the 

predictive maintenance models are 

transparent and understandable to end-users. 

By applying techniques like SHAP 

(SHapley Additive exPlanations), LIME 

(Local Interpretable Model-agnostic 

Explanations), and Counterfactual 

Explanations (CFE), this layer provides 

clear insights into how the model arrived at 

its predictions. For instance, SHAP explains 

which features, such as environmental 

conditions or machinery performance 

metrics, most influenced the prediction of a 

potential failure. LIME helps in 

understanding individual predictions, while 

CFE offers "what-if" scenarios that help 

users explore alternative outcomes. This 

layer ensures that both technical and non-

technical users can understand and trust the 

predictions made by the AI system. 

 

Decision Support Layer 

The Decision Support Layer serves as the 

interface through which end-users interact 

with the system. Based on the AI 

predictions and their explanations, this layer 

provides actionable insights, such as 

maintenance alerts and recommendations. 

For example, users may receive 

notifications about upcoming maintenance 

needs based on predictive models, along 

with the reasoning behind these alerts. The 

system also provides detailed maintenance 

recommendations, including the necessary 

actions and optimal timing, to reduce the 

risk of failure. Additionally, the layer 

includes a feedback loop, where users can 

provide insights to improve the model’s 

accuracy over time. 

User Interface Layer 

The User Interface (UI) Layer provides an 

intuitive and user-friendly interface for 

interacting with the predictive maintenance 

system. The UI includes dashboards that 

display real-time sensor data, predictive 

insights, and maintenance recommendations 

in a visually clear format. These dashboards 

also provide interactive tools for users to 

explore model predictions, view feature 

importance, and access explanations of 

individual predictions. The system is 

designed to be accessible across different 

devices, including desktops, tablets, and 

mobile devices, ensuring that stakeholders 

can access critical information anywhere in 

the facility. 

V.CONCLUSION 

The Explainable Artificial Intelligence (XAI) 

model for Predictive Maintenance (PdM) in 

Smart Agricultural Facilities (SAF) presents 
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a robust and innovative solution to address 

the growing challenges faced by modern 

agricultural operations. By combining 

advanced machine learning algorithms with 

explainability techniques, this system not 

only predicts potential failures and 

maintenance needs with high accuracy but 

also ensures transparency and trust in AI-

driven decisions. The integration of 

technologies like Long-Short-Term Memory 

(LSTM) networks and eXtreme Gradient 

Boosting (XGBoost) offers precise 

predictions of Remaining Useful Life (RUL) 

and anomaly detection, while explainability 

methods such as SHAP, LIME, and 

Counterfactual Explanations (CFE) make 

the system's decisions accessible and 

understandable to non-expert users. 

The system's architecture, designed to 

handle real-time data collection, 

preprocessing, and predictive modeling, 

enables seamless integration into 

agricultural facilities, enhancing operational 

efficiency and minimizing downtime. 

Moreover, the Cloud/Edge Computing 

model ensures scalability and low-latency 

processing, providing timely predictions and 

maintenance alerts. The User Interface 

Layer makes it easier for stakeholders to 

interact with the system and act on AI-

driven insights, improving overall decision-

making. 

Ultimately, this project contributes 

significantly to the field of agricultural AI 

by demonstrating the importance of 

explainability in AI systems. It promotes 

more effective, data-driven maintenance 

practices in SAF, offering a pathway to 

more sustainable, cost-efficient, and 

transparent agricultural operations. Future 

research can explore expanding the system's 

capabilities through multi-modal data 

integration, further refinement of 

explainability methods, and incorporating 

Human-in-the-Loop (HITL) systems to 

enhance the decision-making process. By 

addressing key concerns such as Fairness, 

Accountability, and Transparency (FAT), 

this approach sets a new standard for AI 

applications in the agricultural industry. 
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