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ABSTRACT  

Electric vehicles (EVs) are a key solution to 

combat rising carbon emissions and reduce 

dependence on fossil fuels. In India, the 

government has implemented policies such 

as the Faster Adoption and Manufacturing 

of Hybrid and Electric Vehicles (FAME) 

scheme to promote EV adoption Predicting 

the Remaining Useful Life (RUL) of EV 

batteries using machine learning ensures 

better battery health management and 

enhances operational efficiency. 

Applications include EV fleet management, 

battery recycling, and cost-effective 

maintenance. To develop a machine 

learning model that accurately predicts the 

Remaining Useful Life (RUL) of EV 

batteries to improve operational reliability, 

reduce maintenance costs, and support 

sustainable energy practices. Before the 

advent of machine learning, traditional 

methods for estimating EV battery life 

relied on rule-based approaches, where 

predefined thresholds such as voltage drops 

or charge cycles were used to predict 

battery health. Empirical models, often 

linear, were developed based on historical 

performance data but lacked the ability to 

adapt to dynamic usage patterns. 

Additionally, manual battery testing was a 

common practice to measure degradation, 

though it was time-consuming, labor-

intensive, and often prone to inaccuracies in 

capturing the complex nature of battery 

aging. Traditional systems for predicting 

EV battery life are largely empirical and 

rely on static models that fail to capture 

dynamic battery behavior. These methods 

often lack precision, are labor-intensive, 

and provide limited adaptability to varying 

usage conditions, leading to inefficiencies 

in battery management. The increasing 

demand for EVs and their critical 

dependence on battery performance drives 

the need for accurate RUL prediction 

systems. Traditional methods are 

insufficient in addressing the complex, non-

linear nature of battery degradation. The 

proposed machine learning-based system 

leverages real-time battery performance 

data, including metrics like voltage, 

current, temperature, and charge-discharge 

cycles, to train predictive models capable of 

estimating the Remaining Useful Life 

(RUL) of EV batteries. This approach 

significantly enhances accuracy by 

capturing complex patterns in battery 

degradation, enables real-time predictions 

for immediate insights, optimizes costs by 

minimizing unnecessary replacements and 

maximizing resource utilization, and 

promotes sustainability through efficient 

recycling and reduced battery waste. 

 

 INTRODUCTION  

Electric vehicles (EVs) are emerging as a 

solution to reduce carbon emissions and 

dependence on fossil fuels, addressing 

global environmental challenges. India, as 

part of its sustainable energy goals, has 

introduced initiatives such as the FAME 

scheme to boost EV adoption. Statistics 

indicate that India aims to electrify 30% of 



 
 

Volume 14, Issue 12, Dec 2024                                 ISSN 2457-0362 Page 197 

 

its vehicle fleet by 2030, with EV sales 

growing at a compound annual growth rate 

(CAGR) of 49% over the past five years. 

However, the key challenge lies in ensuring 

battery reliability, as unexpected battery 

failure not only increases costs but also 

impacts consumer trust. Predicting the 

Remaining Useful Life (RUL) of EV 

batteries through machine learning is a 

transformative approach to overcome these 

challenges, ensuring enhanced operational 

efficiency, better resource utilization, and 

sustainability. Predicting the Remaining 

Useful Life (RUL) of EV batteries ensures 

effective battery health management and 

minimizes unexpected failures. Machine 

learning models provide precise 

predictions, improving EV fleet operations, 

battery recycling, and cost-effective 

maintenance. Applications include 

optimizing EV fleet logistics, managing 

battery warranty programs, and enabling 

predictive maintenance for commercial EV 

fleets. Before adopting machine learning, 

traditional systems for predicting EV 

battery life had several limitations. Rule-

based methods relied on fixed thresholds, 

such as voltage drops or charge cycles, 

which failed to account for dynamic battery 

behaviors. Empirical models lacked 

adaptability to real-time usage patterns and 

offered only linear approximations. Manual 

testing methods were time-consuming, 

resource-intensive, and prone to errors, 

making them unsuitable for large-scale 

battery management. These approaches led 

to inefficient maintenance schedules, 

higher operational costs, and limited 

insights into battery degradation dynamics. 

The rapid growth of the EV industry 

highlights the critical role of battery health 

in ensuring reliability and performance. 

Traditional methods fail to provide the 

precision and adaptability needed to predict 

battery life accurately. Advances in 

machine learning offer the potential to 

address these shortcomings by analyzing 

complex and non-linear degradation 

patterns. The motivation for this research 

lies in leveraging these capabilities to 

optimize battery performance, reduce costs, 

and contribute to sustainable energy 

practices. Additionally, accurate RUL 

predictions can foster consumer confidence 

in EV technology. Traditional methods for 

estimating EV battery life included rule-

based systems, empirical models, and 

manual testing. While these methods 

provided basic insights into battery health, 

they lacked accuracy and adaptability to 

changing usage conditions. Rule-based 

approaches were too rigid, empirical 

models failed to capture non-linear 

degradation, and manual testing was 

inefficient for large-scale applications. 

These drawbacks resulted in imprecise 

predictions, increased maintenance costs, 

and unnecessary battery replacements.The 

proposed system involves developing a 

machine learning model trained on real-

time battery performance data, such as 

voltage, current, temperature, and charge-

discharge cycles. Advanced machine 

learning techniques like Bagging with 

Decision tree are employed to capture 

complex degradation patterns and make 

accurate RUL predictions. Research papers, 

such as "Machine Learning Approaches for 

Battery Lifetime Prediction" and "Data-

Driven Predictive Models for EV Battery 

Health," provide a strong foundation for 

implementing such a system. The model 

integrates real-time monitoring, predictive 

analysis, and decision-making capabilities 
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to improve EV battery lifecycle 

management. The growing adoption of EVs 

demands efficient battery lifecycle 

management to ensure reliability and 

consumer satisfaction. Unpredictable 

battery failures can result in costly 

downtimes for EV fleets, reducing their 

operational efficiency. Accurate RUL 

predictions are critical for scheduling 

maintenance and replacements proactively. 

This project aligns with India's push for 

sustainable energy by minimizing battery 

waste and enhancing recycling practices. It 

addresses the environmental concerns of 

battery disposal and promotes circular 

economy initiatives. Real-time RUL 

predictors also aid EV manufacturers in 

optimizing warranty programs and product 

development. 

 

LITERATURE REVIEW 

 

Remaining useful life prediction for 

lithium-ion battery storage system: A 

comprehensive review of methods, key 

factors, issues and future outlook 

• Shaheer Ansari, A. Ayob, +2 

authors M. Saad 

• Published in Energy Reports 1 

November 2022 

Developing battery storage systems for 

clean energy applications is 

fundamental for addressing carbon 

emissions problems. Consequently, 

battery remaining useful life 

prognostics must be established to 

gauge battery reliability to mitigate 

battery failure and risks. Nonetheless, 

the remaining useful life prediction is 

challenging because the factors that 

lead to capacity degradation are not 

entirely understood but are known to 

complex internal battery mechanism 

and external environmental factor. 

Therefore, the aim of this review is to 

provide a critical discussion and 

analysis of remaining useful life 

prediction of lithium-ion battery 

storage system. In line with that, 

various methods and techniques have 

been investigated comprehensively 

highlighting outcomes, advantages, 

disadvantages, and research 

limitations. Besides, the review 

explores numerous crucial 

implementation factors concerning 

experiments, battery data, features, 

training, and computation capability. 

Furthermore, several key issues and 

challenges are outlined to identify the 

existing research gaps. Finally, this 

review delivers effective suggestions, 

opportunities and improvements which 

would be favourable to the researchers 

to develop an appropriate and robust 

remaining useful life prediction method 

for sustainable operation and 

management of future battery storage 

system. 

Overview of Methods for Battery 

Lifetime Extension 

• Siyu Jin, Xinrong Huang, +3 

authors D. Stroe 

• Published in EPE 6 September 

2021 

Lithium-ion (Li-ion) batteries are 

widely used in transportation, 

aerospace, and electrical. How to 

extend their lifetime has become an 

important topic. In this paper, the 

methods for battery lifetime extension 

in terms of thermal management, 

charging/discharging optimization, 
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and power and energy management 

control strategies are reviewed. Firstly, 

this paper summarizes and classifies 

the methods proposed in recent years 

to extend battery lifetime. Secondly, the 

advantages and drawbacks of each 

method are compared in detail. Finally, 

the advancement of various methods is 

summarized and prospect for future 

research direction on battery lifetime 

extension is provided.  

Use of ML Techniques for Li-Ion 

Battery Remaining Useful Life 

Prediction-A Survey 

• A. Tiwari, C. R. A. Varshini, +3 

authors V. Sailaja 

• Published in IEEE International 

Conference… 22 February 2023 

Batteries made of lithium-ion material 

are crucially important for charge 

storage in Electric Vehicles. Most of the 

appliances use these batteries for the 

storage of energy which can be drawn 

as per the appliance requirement. It is 

important to know the reliability of the 

battery, as these batteries have a vital 

role in energy storage. As the number of 

cycles of usage of the battery increases 

there is always a change in the capacity 

of the battery even at 100 percentage 

State of Charge, once this capacity 

crosses the threshold of failure then it 

results in a dry cell and the cell does not 

hold the capacity to retain the charge. 

Therefore, Remaining Useful Life 

(RUL) becomes an important concept 

in Battery Management System (BMS) 

for industrial as well as academic 

research. The suitable method for RUL 

prediction along with the 

implementation of ML techniques are 

covered in this paper. 

EXISTING SYSTEM 

Before the advent of artificial intelligence, 

traditional systems relied on rule-based 

approaches, empirical models, and manual 

testing to estimate the Remaining Useful 

Life (RUL) of EV batteries. Rule-based 

methods used predefined thresholds, such 

as voltage drop, temperature rise, or 

specific charge-discharge cycle counts, to 

assess battery health. These methods were 

simplistic and often generalized, failing to 

account for variations in usage patterns and 

environmental conditions. Empirical 

models employed linear relationships 

derived from historical battery performance 

data. These models provided a basic 

understanding of battery degradation but 

lacked the capacity to capture the non-

linear and dynamic nature of real-world 

battery aging processes. Additionally, 

manual testing was frequently used to 

measure parameters like capacity fade and 

internal resistance. This process typically 

involved physical disassembly and testing 

under laboratory conditions. While this 

method provided accurate data for specific 

cases, it was time-consuming, resource-

intensive, and impractical for large-scale 

battery management or real-time 

applications. The absence of real-time 

monitoring and predictive capabilities in 

these systems made them inadequate for 

modern EV requirements. They could not 

dynamically adapt to diverse usage 

conditions, resulting in suboptimal battery 

management strategies, increased 

maintenance costs, and higher risks of 

unexpected failures. 
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Disadvantages: 

• Limited Accuracy and Generalization: 

Rule-based approaches often relied on 

predefined thresholds like voltage 

drop and temperature rise. While these 

thresholds could indicate certain 

degradation patterns, they failed to 

account for variations in battery 

usage, environmental conditions, and 

individual battery characteristics, 

leading to generalized and often 

inaccurate estimations. 

• Inability to Model Complex 

Degradation Patterns: Empirical 

models, based on linear relationships 

derived from historical data, could not 

capture the complex, non-linear, and 

dynamic nature of battery aging 

processes. As a result, they offered an 

oversimplified understanding of 

degradation and could not predict 

RUL with high precision over time. 

• Time-Consuming and Labor-

Intensive: Manual testing, which 

involved physical disassembly and 

laboratory testing, was both time-

consuming and resource-intensive. It 

could only be conducted on a limited 

number of batteries and failed to scale 

effectively for large fleets or real-time 

applications. This made it impractical 

for efficient battery management and 

real-time performance monitoring. 

• Lack of Real-Time Monitoring and 

Predictive Capability: Traditional 

methods did not provide the ability to 

monitor battery health in real-time or 

predict future performance under 

varying usage conditions. This led to 

static and inflexible battery 

management strategies, which were 

unable to adapt to changing usage 

patterns, environmental factors, or 

wear levels. 

• Higher Risks and Maintenance Costs: 

Without advanced predictive 

capabilities, traditional systems were 

unable to identify potential failures or 

impending degradation before they 

occurred. This increased the risk of 

unexpected battery failures, resulting 

in costly repairs, unplanned 

downtimes, and suboptimal battery 

life management. As a result, 

maintenance costs and operational 

risks were higher compared to more 

advanced, AI-driven systems. 

PROPOSED SYSTEM  

The process begins with the acquisition of 

a dataset containing detailed information 

about EV battery performance. This dataset 

typically includes features such as voltage, 

current, temperature, charge-discharge 

cycles, and capacity retention over time. It 

is sourced from real-world battery testing 

experiments or publicly available 

repositories, serving as the foundation for 

training and testing machine learning 

models. Dataset preprocessing is a crucial 

step to ensure the quality and reliability of 

the data. It involves handling missing or 

null values by removing them or imputing 

appropriate values. Other preprocessing 

tasks include scaling features for 

uniformity and standardizing the data to 

improve model performance. This step also 

includes identifying and removing outliers 

to minimize noise in the dataset. To 

establish a baseline, existing algorithms 

like Support Vector Regressor (SVR) and 

Deep Neural Network (DNN) regressors 

are applied. SVR is a robust model that 
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maps data into higher dimensions for linear 

regression, while DNN uses a deep learning 

architecture to capture complex non-linear 

relationships in the data. The performance 

of these models is assessed to provide a 

comparative benchmark for the proposed 

approach. The proposed method leverages 

a Bagging ensemble with Decision Tree 

Regressor to improve prediction accuracy. 

This algorithm combines multiple decision 

tree models, averaging their outputs to 

enhance robustness and reduce overfitting. 

It is specifically designed to handle non-

linear battery degradation patterns and is 

trained on the preprocessed dataset. The 

models are evaluated using standard 

performance metrics such as Mean 

Absolute Error (MAE), Mean Squared 

Error (MSE), and R-squared scores. The 

proposed Bagging with Decision Tree 

Regressor is compared against the baseline 

models (SVR and DNN), demonstrating its 

superior ability to predict the Remaining 

Useful Life (RUL) of EV batteries 

accurately. The trained Bagging with 

Decision Tree Regressor model is used to 

make predictions on test data. This involves 

feeding the test dataset into the model to 

estimate the RUL of EV batteries, enabling 

accurate, real-time insights for effective 

battery management. 

Advantages : 

  Improved Prediction Accuracy: The 

Bagging ensemble method enhances 

prediction accuracy by combining multiple 

decision tree models, which helps reduce 

variance and improve generalization. This 

approach provides more accurate RUL 

estimates compared to single models like 

Support Vector Regressor (SVR) or Deep 

Neural Network (DNN), which may be 

prone to overfitting or underfitting on their 

own. 

  Robustness and Stability: By 

averaging the outputs of multiple decision 

trees, Bagging significantly reduces the risk 

of overfitting to noise or outliers in the 

dataset. This makes the model more robust 

and stable, particularly in real-world 

conditions where data can be noisy or 

imperfect. 

  Ability to Capture Non-Linear 

Degradation Patterns: Decision Trees 

excel at handling non-linear relationships, 

which is crucial for accurately modeling the 

complex and dynamic nature of battery 

degradation. The proposed method is well-

suited to capture the intricate degradation 

patterns of EV batteries that cannot be 

easily represented by simpler, linear models 

like SVR. 

  Scalability and Flexibility: The 

Bagging ensemble with Decision Tree 

Regressor can scale effectively to large 

datasets and can be adapted to different 

types of battery systems or usage 

conditions. This makes it a versatile 

approach for real-time battery management 

applications across a wide range of electric 

vehicles with varying operational profiles. 

  Superior Performance Metrics: The 

use of standard performance metrics, such 

as Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and R-squared 

scores, ensures that the model’s 

performance can be quantitatively assessed 

and compared. In tests, the Bagging with 

Decision Tree Regressor outperforms 

baseline models like SVR and DNN, 

demonstrating its superior ability to provide 

accurate RUL predictions for EV batteries. 
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IMPLEMENTATION 

 

SYSTEM ARCHITECTURE 

 
 

MODULES 

 

NumPy 

NumPy is a general-purpose array-

processing package. It provides a high-

performance multidimensional array 

object, and tools for working with these 

arrays. 

It is the fundamental package for scientific 

computing with Python. It contains various 

features including these important ones: 

• A powerful N-dimensional array 

object 

• Sophisticated (broadcasting) 

functions 

• Tools for integrating C/C++ and 

Fortran code 

• Useful linear algebra, Fourier 

transform, and random number 

capabilities 

Besides its obvious scientific uses, NumPy 

can also be used as an efficient multi-

dimensional container of generic data. 

Arbitrary datatypes can be defined using 

NumPy which allows NumPy to seamlessly 

and speedily integrate with a wide variety 

of databases. 

Pandas 

Pandas is an open-source Python Library 

providing high-performance data 

manipulation and analysis tool using its 

powerful data structures. Python was 

majorly used for data munging and 

preparation. It had very little contribution 

towards data analysis. Pandas solved this 

problem. Using Pandas, we can accomplish 

five typical steps in the processing and 

analysis of data, regardless of the origin of 

data load, prepare, manipulate, model, and 

analyze. Python with Pandas is used in a 

wide range of fields including academic 

and commercial domains including finance, 

economics, Statistics, analytics, etc. 

Matplotlib 

Matplotlib is a Python 2D plotting library 

which produces publication quality figures 

in a variety of hardcopy formats and 

interactive environments across platforms. 

Matplotlib can be used in Python scripts, 

the Python and IPython shells, the Jupyter 

Notebook, web application servers, and 

four graphical user interface toolkits. 

Matplotlib tries to make easy things easy 

and hard things possible. You can generate 

plots, histograms, power spectra, bar charts, 

error charts, scatter plots, etc., with just a 

few lines of code. For examples, see the 

sample plots and thumbnail gallery. 

For simple plotting the pyplot module 

provides a MATLAB-like interface, 

particularly when combined with IPython. 

For the power user, you have full control of 

line styles, font properties, axes properties, 

etc, via an object oriented interface or via a 

set of functions familiar to MATLAB users. 

Scikit – learn 

Scikit-learn provides a range of supervised 

and unsupervised learning algorithms via a 

consistent interface in Python. It is licensed 

under a permissive simplified BSD license 

and is distributed under many Linux 

distributions, encouraging academic and 

commercial use. Python 

Python is an interpreted high-level 

programming language for general-purpose 

programming. Created by Guido van 
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Rossum and first released in 1991, Python 

has a design philosophy that emphasizes 

code readability, notably using significant 

whitespace.  

Python features a dynamic type system and 

automatic memory management. It 

supports multiple programming paradigms, 

including object-oriented, imperative, 

functional and procedural, and has a large 

and comprehensive standard library.  

• Python is Interpreted − Python is 
processed at runtime by the 

interpreter. You do not need to 

compile your program before 

executing it. This is similar to PERL 

and PHP.  

• Python is Interactive − you can 
actually sit at a Python prompt and 

interact with the interpreter directly 

to write your programs.  

Python also acknowledges that speed of 

development is important. Readable and 

terse code is part of this, and so is access to 

powerful constructs that avoid tedious 

repetition of code. Maintainability also ties 

into this may be an all but useless metric, 

but it does say something about how much 

code you have to scan, read and/or 

understand to troubleshoot problems or 

tweak behaviors. This speed of 

development, the ease with which a 

programmer of other languages can pick up 

basic Python skills and the huge standard 

library is key to another area where Python 

excels. All its tools have been quick to 

implement, saved a lot of time, and several 

of them have later been patched and 

updated by people with no Python 

background - without breaking. 

 

 

 

RESULT 

 

 
CONCLUSION 

 

The dataset provides valuable insights into 

battery performance and health over 

different charging and discharging cycles. 

By analyzing parameters like discharge 

time, voltage levels, and charging 

durations, we can model and predict the 

Remaining Useful Life (RUL) of batteries. 

This predictive capability can help in timely 

maintenance and replacements, ensuring 

optimal performance. The dataset is 

essential for researchers and engineers 

working on battery degradation, health 

monitoring systems, and predictive 

maintenance models, contributing to better 

battery management and longevity in 
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applications like electric vehicles and 

energy storage systems. 
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