

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 102

FPGA Implementation of Advanced Encryption Standard

Algorithm

Dr. Syed Jalal Ahmad1, G Prasanna Kumar2

Professor1, Associate Professor2

Department of ECE

Malla Reddy Engineering College

Abstract: Embedded cryptographic devices are vulnerable to power analysis attacks. Threshold

implementations (TIs) provide provable security against first-order power analysis attacks for hardware and

software implementations. Like masking, the approach relies on secret sharing but it differs in the

implementation of logic functions. While masking can fail to provide protection due to glitches in the

circuit, TIs rely on few assumptions about the hardware and are fully compatible with standard design

flows. We investigate two important properties of TIs in detail and point out interesting trade-offs between

circuit area and randomness requirements. We propose two new TIs of AES that, starting from a common

previously published implementation, illustrate possible trade-offs. We provide concrete ASIC

implementation results for all three designs using the same library, and we evaluate the practical security

of all three designs on the same FPGA platform. Our analysis allow us to directly compare the security

provided by the different trade-offs, and to quantify the associated hardware cost.

Keywords-AES, encryption, decryption, Field Programmable Gate Array (FPGA).

I. Introduction

The mass deployment of pervasive devices

promises many benefits such as lower logistic

costs, higher process granularity, optimized

supply-chains, or location based services among

others. Besides these benefits, there are also many

risks inherent in pervasive computing: many

foreseen applications are security sensitive, such as

wireless sensor networks for military, financial or

automotive applications. With the widespread

presence of embedded computers in such

scenarios, security is a striving issue, because the

potential damage of malicious attacks also

increases. An aggravating factor is that pervasive

devices are usually not deployed in a controlled but

rather in a hostile environment, i.e., an adversary

has physical access to or control over the devices.

This adds the whole field of physical attacks to the

potential attack scenarios. Most notably are here so

called side-channel attacks, especially Simple,

Differential and Correlation Power Analysis.

Smart cards and other types of pervasive devices

performing cryptographic operations are seriously

challenged by side-channel cryptanalysis. Several

publications, e.g., [12] have stressed that such

physical attacks are an extremely practical and

powerful tool for recovering the secrets of

unprotected cryptographic devices. In fact, these

attacks exploit the information leaking through

physical side channels and involved in sensitive

computations to reveal the key materials. Amongst

the known sources of side channels and the

corresponding attacks most notable are power

analysis attacks [18]. Many different kinds of

power analysis attacks, e.g., simple and differential

power analysis (SPA and DPA) [18], template-

based attacks [2], and mutual information analysis

[14], have been introduced while each one has its

own advantages and is suitable in its special

conditions. However, correlation power analysis

(CPA) [6], which is a general form of DPA, got

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 103

more attention since it is able to efficiently reveal

the secrets by comparing the measurements to the

estimations obtained by means of a theoretical

power model which fits to the characteristics of the

target implementation.

II. LITERATURE SURVEY

Higher-order glitches free implementation of

the AES using secure multi-party computation

protocols

Higher-order side channel attacks (HO-

SCA) is a powerful technique against

cryptographic implementations and the design of

appropriate countermeasures is nowadays an

important topic. In parallel, another class of

attacks, called glitches attacks, have been

investigated which exploit the hardware glitches

phenomena occurring during the physical

execution of algorithms. We introduce in this paper

a circuit model that encompasses sufficient

conditions to resist glitches effects. This allows us

to construct the first countermeasure thwarting

both glitches and HO-SCA attacks. Our new

construction requires Secure Multi-Party

Computation protocols and we propose to apply the

one introduced by Ben’Or et al. at STOC in 1988.

The adaptation of the latter protocol to the context

of side channel analysis results in a completely new

higher-order masking scheme, particularly

interesting when addressing resistance in the

presence of glitches. An application of our scheme

to the AES block cipher is detailed.

On the simplicity of converting leakages from

multivariate to univariate (case study of a

glitch-resistant masking scheme)

Several masking schemes to protect cryptographic

implementations against side-channel attacks have

been proposed. A few considered the glitches, and

provided security proofs in presence of such

inherent phenomena happening in logic circuits.

One which is based on multi-party computation

protocols and utilizes Shamir’s secret sharing

scheme was presented at CHES 2011. It aims at

providing security for hardware implementations –

mainly of AES – against those sophisticated side-

channel attacks that also take glitches into account.

One part of this article deals with the practical

issues and relevance of the aforementioned

masking scheme. Following the recommendations

given in the extended version of the mentioned

article, we first provide a guideline on how to

implement the scheme for the simplest settings.

Constructing an exemplary design of the scheme,

we provide practical side-channel evaluations

based on a Virtex-5 FPGA. Our results demonstrate

that the implemented scheme is indeed secure

against univariate power analysis attacks given a

basic measurement setup. In the second part of this

paper we show how using very simple changes in

the measurement setup opens the possibility to

exploit multivariate leakages while still performing

a univariate attack. Using these techniques the

scheme under evaluation can be defeated using

only a moderate number of measurements. This is

applicable not only to the scheme showcased here,

but also to most other known masking schemes

where the shares of sensitive values are processed

in adjacent clock cycles.

III. Existing Work

Low-power low-area implementations of

the AES have been reported requiring 3100 GE and

160 clock cycles and requiring 3400 GE and 1032

clock cycles. Both implementations use an 8-bit

serialized data path and implement only a quarter

of the Mix Columns operations. The first design,

implements two S-boxes and performs the data

path and the key schedule operations in parallel,

while the latter implementation is fully serial and

uses a RAM-like architecture. Canright has

investigated very thoroughly how to implement the

AES Sbox in hardware with minimal area

requirements [8]. On the other hand, several

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 104

masking schemes have been proposed to create a

masked AES S-box using either multiplicative or

additive approaches. A common approach is to use

the tower- field representation for an additive

masking scheme because of the linearity of the

inversion in GF (22).However, as expected its

hardware implementation still has first-order

leakage.

First contribution is a description of the

smallest hardware implementation of AES known

to date. Our design goal was solely low area, and

thus we were able to set the time-area and the

power-area tradeoffs differently, and in favor for a

more compact hardware realization. To pursue our

goal, we have taken a holistic approach that

optimizes the total design, not every component

individually. In total we achieved an

implementation that requires only 2400 GE and

needs 226 clock cycles, which is to the best of our

knowledge 23% smaller than any previously

published implementations. As a second

contribution, we investigate side-channel

countermeasures for this lightweight AES

implementation. It turns out that when using Can

right’s representation, the only non-linear function

is the multiplication in GF(22). Building on these

findings, we applied the countermeasure to our

unprotected AES implementation. For this

architecture we conducted a complete side-channel

evaluation based on real-world power traces that

we obtain from SASEBO. We use a variety of

different power analysis attacks to investigate the

achieved level of resistance of our implementation

against first order DPA attacks even if an attacker

is capable of measuring 100 million power traces.

IV. Proposed Work

A serial implementation for round

operations and key schedule as proposed which

requires only one S-box instance and loads the

plaintext and key byte-wise in row-wise order. We

also use one Mix Columns instance that operates

on the whole column and provides an output in one

clock cycle. Due to this extreme serialization, one

round requires at least 21 clock cycles even for the

unprotected implementation. All our TIs execute

one round in 23 clock cycles. In the first 16 clock

cycles, the plaintext is XORed with the key and

sent to the S-box. Its output will be taken from the

third to the 18th clock cycles and stored in the state

registers, i.e., the S-box is executed in three clock

cycles. The Shift Rows operation is performed in

the 19th clock cycle followed by four cycles of Mix

Columns calculation. The S-box takes its input

from the key schedule for four cycles starting from

the 18th cycle. In the 17th, 22nd, and 23rd clock

cycles, the S-box inputs and unused random bits

are set to 0. Therefore, the calculation of AES takes

23 × 10 + 16 = 246 clock cycles, including 16

cycles to output the cipher text.

Fig. 1. Schematic of the serialized TI of raw AES-

128.

1) Raw Implementation: We use two sets of state

registers, each consisting of sixteen 16-bit

registers, corresponding to the two shares of the

state. The Mix Columns and the Key XOR

operations are also performed with two shares.

As the key and the state registers are 256

bits implying the two shares. This TI of the S-box

(details will be given in the following section)

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 105

requires four input shares, therefore, we initially

share the plaintext in four shares. We share the key

in two shares and XOR them with two of the

plaintext shares before the S-box operation. More

details about the key scheduling will be given later

in this section. Besides the shared input, the S-box

needs 20-bits of randomness r. whereas the

remaining share sbout3 is written to register P3.

The data in the state registers are shifted to

the left for the following 16 cycles so that the next

output of the S-box can be stored in the same

registers. During this shift, the data in P3 is XORed

with the second share of the S-box output, which is

in the state register S33, to reduce the number of

shares from three to two. To achieve this signal,

sig2 is active from the fourth to the 19th clock

cycle.

Fig. 2. Schematic of the state (top) and key

(bottom) arrays for our raw implementation where

Si, Ki, and P0 hold two shares and P3 holds one

share. The registers P0 and P3 are used by the state

and the key array. The XOR of the value in P3 and

S33 (resp. K30) is on one share of the value in

register S33 (resp. K30) whereas all the other

combinational operations are on two shares.

The S-box implementations use the tower

field approach up to GF(22) for a small

implementation. Therefore, the only nonlinear

operation is GF(22) multiplication which must be

followed by registers and remasking to avoid first

order leakages. Also chose to use the tower field

approach, however, decided to go until GF (24)

instead of GF(22). With this approach, the GF(24)

inverter can be seen as a four bit permutation and

the GF(24) multiplier as a four-bit multiplication.

Therefore, we can find uniform TIs for each of

these nonlinear functions. This might allow us to

reduce the number of fresh random bits needed

since we will have fewer nonlinear blocks

compared to hence possibly require less remasking

in order to use their outputs.

Fig. 3. S-box of the raw implementation.

Even though it is enough to use only two

shares for linear operations, we sometimes chose to

work on more than two shares to avoid the need of

extra random bits. The linear map of the tower-

field S-box operates on four shares since the

multiplication needs four input shares. The inverter

requires five input shares and the multiplication

outputs only three shares, therefore, use two shares

for the square scalar to have five shares in the

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 106

beginning of the second phase. Use three shares for

the inverse linear map of the tower-field S-box

since the multiplication outputs three shares. For all

the linear operations, the shared functions are

created as instantiations of the unshared function

for the first share and as unshared function without

the constant term for the other shares.

Fig. 4. S-box of the adjusted implementation.

Fig. 5. S-box of the nimble implementation.

Adjusted Implementation:

As mentioned in the earlier sections, the

only difference between the raw and the adjusted

implementation is that the adjusted implementation

requires at least three shares for all the blocks

including the linear operations in the S-box. For

that reason, the shared square scaler circuit is

instantiated with three shares. This S-box also

requires 44-bits of randomness per iteration.

 Nimble Implementation:

Use fresh randomness at the end of the first

phase to satisfy uniformity during the combination

of the square scaler’s and the multiplier’s outputs,

and after the inverter to break the dependency

between the inputs of the multipliers in the third

phase. Since these remasking steps conserve the

uniformity property and the security of each block

is achieved only by the correctness and non

completeness properties can discard the uniformity

property and implement these nonlinear functions

with the smallest number of shares n s.t. n > d, i.e.,

n = d + 1,where d is the degree of the unshared

functions.

V.RESULTS

Simulation.

RTL Schematic.

Design Summary.

Timing Summary.

Volume 10, Issue 09, Sep 2020 ISSN 2581 – 4575 Page 107

VI.CONCLUSION

Three different versions of TIs of AES. We

show that it is possible to achieve first-order DPA

resistance with non uniform shared functions if

remasking is applied properly. In the case of AES,

our “non uniform” nimble implementation

requires less randomness than our “uniform” raw

implementation, due to the decreased number of

shares. However, for other algorithms and other S-

boxes, remasking may increase the amount of

randomness required. This idea can be used to

trade-off between the randomness and area

requirements. Moreover, we empirically confirm

that increasing the number of shares has a

significant impact on the performance of higher-

order attacks, which provides another trade-off

between area and DPA resistance. Our most

efficient implementation is approximately 8 k GE

small and requires only 32 bits of fresh randomness

per S-box calculation, which is a significant

improvement over all previous works.

References

[1]. A. Moradi and O. Mischke, “On the simplicity

of converting leakages from multivariate to

univariate (case study of a glitch-resistant masking

scheme),” in Cryptographic Hardware and

Embedded Systems—CHES (LNCS 8086). Berlin,

Germany: Springer, 2013, pp. 1–20.

[2] L. Batina et al., “Mutual information analysis:

A comprehensive study,” J. Cryptol., vol. 24, no.

2, pp. 269–291, Apr. 2011.

[3] A. Moradi, “Statistical tools flavor side-channel

collision attacks,” in Advances in Cryptology—

EUROCRYPT (LNCS 7237). Berlin,

Germany: Springer, 2012, pp. 428–445.

[4] B. Bilgin, S. Nikova, V. Nikov, V. Rijmen, and

G. Stütz, “Threshold implementations of all 3 × 3

and 4 × 4 S-boxes,” in Cryptographic

Hardware and Embedded Systems—CHES (LNCS

7428). Berlin, Germany: Springer, 2012, pp. 76–

91.

[5] A. Poschmann et al., “Side-channel resistant

crypto for less than 2300 GE,” J. Cryptol., vol. 24,

no. 2, pp. 322–345, 2011.

[6] A. Moradi, A. Poschmann, S. Ling, C. Paar, and

H. Wang, “Pushing the limits: A very compact and

a threshold implementation of AES,”

in Advances in Cryptology—EUROCRYPT (LNCS

6632). Berlin, Germany: Springer, 2011, pp. 69–

88.

[7]. E. Brier, C. Clavier, and F. Olivier. Correlation

Power Analysis with a Leakage Model. In CHES

2004, volume 3156 of LNCS, pages 16–29.

Springer, 2004.

[8]. D. Canright and L. Batina. A Very Compact

"Perfectly Masked" S-Box for AES. In ACNS

2008, volume 5037 of LNCS, pages 446–459.

Springer, 2008. the corrected version at Cryptology

ePrint Archive, Report 2009/011.

[9]. J. Daemen and V. Rijmen. The Design of

Rijndael: AES - The Advanced Encryption

Standard. Springer, 2002.

[10]. L. Goubin and A. Martinelli. Protecting AES

with Shamir’s Secret Sharing Scheme. In CHES

2011, volume 6917 of LNCS, pages 79–94.

Springer, 2011.

