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Abstract: Embedded cryptographic devices are vulnerable to power analysis attacks. Threshold 

implementations (TIs) provide provable security against first-order power analysis attacks for hardware and 

software implementations. Like masking, the approach relies on secret sharing but it differs in the 

implementation of logic functions. While masking can fail to provide protection due to glitches in the 

circuit, TIs rely on few assumptions about the hardware and are fully compatible with standard design 

flows. We investigate two important properties of TIs in detail and point out interesting trade-offs between 

circuit area and randomness requirements. We propose two new TIs of AES that, starting from a common 

previously published implementation, illustrate possible trade-offs. We provide concrete ASIC 

implementation results for all three designs using the same library, and we evaluate the practical security 

of all three designs on the same FPGA platform. Our analysis allow us to directly compare the security 

provided by the different trade-offs, and to quantify the associated hardware cost. 
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I. Introduction 

The mass deployment of pervasive devices 

promises many benefits such as lower logistic 

costs, higher process granularity, optimized 

supply-chains, or location based services among 

others. Besides these benefits, there are also many 

risks inherent in pervasive computing: many 

foreseen applications are security sensitive, such as 

wireless sensor networks for military, financial or 

automotive applications. With the widespread 

presence of embedded computers in such 

scenarios, security is a striving issue, because the 

potential damage of malicious attacks also 

increases. An aggravating factor is that pervasive 

devices are usually not deployed in a controlled but 

rather in a hostile environment, i.e., an adversary 

has physical access to or control over the devices. 

This adds the whole field of physical attacks to the 

potential attack scenarios. Most notably are here so 

called side-channel attacks, especially Simple, 

Differential and Correlation Power Analysis. 

Smart cards and other types of pervasive devices 

performing cryptographic operations are seriously 

challenged by side-channel cryptanalysis. Several 

publications, e.g., [12] have stressed that such 

physical attacks are an extremely practical and 

powerful tool for recovering the secrets of 

unprotected cryptographic devices. In fact, these 

attacks exploit the information leaking through 

physical side channels and involved in sensitive 

computations to reveal the key materials. Amongst 

the known sources of side channels and the 

corresponding attacks most notable are power 

analysis attacks [18]. Many different kinds of 

power analysis attacks, e.g., simple and differential 

power analysis (SPA and DPA) [18], template-

based attacks [2], and mutual information analysis 

[14], have been introduced while each one has its 

own advantages and is suitable in its special 

conditions. However, correlation power analysis 

(CPA) [6], which is a general form of DPA, got 
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more attention since it is able to efficiently reveal 

the secrets by comparing the measurements to the 

estimations obtained by means of a theoretical 

power model which fits to the characteristics of the 

target implementation.  

 

II. LITERATURE SURVEY 

 

Higher-order glitches free implementation of 

the AES using secure multi-party computation 

protocols 

Higher-order side channel attacks (HO-

SCA) is a powerful technique against 

cryptographic implementations and the design of 

appropriate countermeasures is nowadays an 

important topic. In parallel, another class of 

attacks, called glitches attacks, have been 

investigated which exploit the hardware glitches 

phenomena occurring during the physical 

execution of algorithms. We introduce in this paper 

a circuit model that encompasses sufficient 

conditions to resist glitches effects. This allows us 

to construct the first countermeasure thwarting 

both glitches and HO-SCA attacks. Our new 

construction requires Secure Multi-Party 

Computation protocols and we propose to apply the 

one introduced by Ben’Or et al. at STOC in 1988. 

The adaptation of the latter protocol to the context 

of side channel analysis results in a completely new 

higher-order masking scheme, particularly 

interesting when addressing resistance in the 

presence of glitches. An application of our scheme 

to the AES block cipher is detailed.   

On the simplicity of converting leakages from 

multivariate to univariate (case study of a 

glitch-resistant masking scheme) 

Several masking schemes to protect cryptographic 

implementations against side-channel attacks have 

been proposed. A few considered the glitches, and 

provided security proofs in presence of such 

inherent phenomena happening in logic circuits. 

One which is based on multi-party computation 

protocols and utilizes Shamir’s secret sharing 

scheme was presented at CHES 2011. It aims at 

providing security for hardware implementations – 

mainly of AES – against those sophisticated side-

channel attacks that also take glitches into account. 

One part of this article deals with the practical 

issues and relevance of the aforementioned 

masking scheme. Following the recommendations 

given in the extended version of the mentioned 

article, we first provide a guideline on how to 

implement the scheme for the simplest settings. 

Constructing an exemplary design of the scheme, 

we provide practical side-channel evaluations 

based on a Virtex-5 FPGA. Our results demonstrate 

that the implemented scheme is indeed secure 

against univariate power analysis attacks given a 

basic measurement setup. In the second part of this 

paper we show how using very simple changes in 

the measurement setup opens the possibility to 

exploit multivariate leakages while still performing 

a univariate attack. Using these techniques the 

scheme under evaluation can be defeated using 

only a moderate number of measurements. This is 

applicable not only to the scheme showcased here, 

but also to most other known masking schemes 

where the shares of sensitive values are processed 

in adjacent clock cycles. 

  

III. Existing Work 

Low-power low-area implementations of 

the AES have been reported requiring 3100 GE and 

160 clock cycles and requiring 3400 GE and 1032 

clock cycles. Both implementations use an 8-bit 

serialized data path and implement only a quarter 

of the Mix Columns operations. The first design, 

implements two S-boxes and performs the data 

path and the key schedule operations in parallel, 

while the latter implementation is fully serial and 

uses a RAM-like architecture. Canright has 

investigated very thoroughly how to implement the 

AES Sbox in hardware with minimal area 

requirements [8]. On the other hand, several 
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masking schemes have been proposed to create a 

masked AES S-box using either multiplicative or 

additive approaches. A common approach is to use 

the tower- field representation for an additive 

masking scheme because of the linearity of the 

inversion in GF (22 ).However, as expected its 

hardware implementation still has first-order 

leakage. 

First contribution is a description of the 

smallest hardware implementation of AES known 

to date. Our design goal was solely low area, and 

thus we were able to set the time-area and the 

power-area tradeoffs differently, and in favor for a 

more compact hardware realization. To pursue our 

goal, we have taken a holistic approach that 

optimizes the total design, not every component 

individually. In total we achieved an 

implementation that requires only 2400 GE and 

needs 226 clock cycles, which is to the best of our 

knowledge 23% smaller than any previously 

published implementations. As a second 

contribution, we investigate side-channel 

countermeasures for this lightweight AES 

implementation. It turns out that when using Can 

right’s representation, the only non-linear function 

is the multiplication in GF(22). Building on these 

findings, we applied the countermeasure to our 

unprotected AES implementation. For this 

architecture we conducted a complete side-channel 

evaluation based on real-world power traces that 

we obtain from SASEBO. We use a variety of 

different power analysis attacks to investigate the 

achieved level of resistance of our implementation 

against first order DPA attacks even if an attacker 

is capable of measuring 100 million power traces. 

 

IV. Proposed Work 

A serial implementation for round 

operations and key schedule as proposed which 

requires only one S-box instance and loads the 

plaintext and key byte-wise in row-wise order. We 

also use one Mix Columns instance that operates 

on the whole column and provides an output in one 

clock cycle. Due to this extreme serialization, one 

round requires at least 21 clock cycles even for the 

unprotected implementation. All our TIs execute 

one round in 23 clock cycles. In the first 16 clock 

cycles, the plaintext is XORed with the key and 

sent to the S-box. Its output will be taken from the 

third to the 18th clock cycles and stored in the state 

registers, i.e., the S-box is executed in three clock 

cycles. The Shift Rows operation is performed in 

the 19th clock cycle followed by four cycles of Mix 

Columns calculation. The S-box takes its input 

from the key schedule for four cycles starting from 

the 18th cycle. In the 17th, 22nd, and 23rd clock 

cycles, the S-box inputs and unused random bits 

are set to 0. Therefore, the calculation of AES takes 

23 × 10 + 16 = 246 clock cycles, including 16 

cycles to output the cipher text. 

 

 
Fig. 1. Schematic of the serialized TI of raw AES-

128. 

 

 

1) Raw Implementation: We use two sets of state 

registers, each consisting of sixteen 16-bit 

registers, corresponding to the two shares of the 

state. The Mix Columns and the Key XOR 

operations are also performed with two shares.  

As the key and the state registers are 256 

bits implying the two shares. This TI of the S-box 

(details will be given in the following section) 
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requires four input shares, therefore, we initially 

share the plaintext in four shares. We share the key 

in two shares and XOR them with two of the 

plaintext shares before the S-box operation. More 

details about the key scheduling will be given later 

in this section. Besides the shared input, the S-box 

needs 20-bits of randomness r. whereas the 

remaining share sbout3 is written to register P3.  

The data in the state registers are shifted to 

the left for the following 16 cycles so that the next 

output of the S-box can be stored in the same 

registers. During this shift, the data in P3 is XORed 

with the second share of the S-box output, which is 

in the state register S33, to reduce the number of 

shares from three to two. To achieve this signal, 

sig2 is active from the fourth to the 19th clock 

cycle.  

 
 

 

Fig. 2. Schematic of the state (top) and key 

(bottom) arrays for our raw implementation where 

Si, Ki, and P0 hold two shares and P3 holds one 

share. The registers P0 and P3 are used by the state 

and the key array. The XOR of the value in P3 and 

S33 (resp. K30) is on one share of the value in 

register S33 (resp. K30) whereas all the other 

combinational operations are on two shares. 

 

The S-box implementations use the tower 

field approach up to GF(22) for a small 

implementation. Therefore, the only nonlinear 

operation is GF(22) multiplication which must be 

followed by registers and remasking to avoid first 

order leakages. Also chose to use the tower field 

approach, however, decided to go until GF (24) 

instead of GF(22). With this approach, the GF(24) 

inverter  can be seen as a four bit permutation and 

the GF(24) multiplier as a four-bit multiplication. 

Therefore, we can find uniform TIs for each of 

these nonlinear functions. This might allow us to 

reduce the number of fresh random bits needed 

since we will have fewer nonlinear blocks 

compared to hence possibly require less remasking 

in order to use their outputs. 

 
 

Fig. 3. S-box of the raw implementation. 

 

Even though it is enough to use only two 

shares for linear operations, we sometimes chose to 

work on more than two shares to avoid the need of 

extra random bits. The linear map of the tower-

field S-box operates on four shares since the 

multiplication needs four input shares. The inverter 

requires five input shares and the multiplication 

outputs only three shares, therefore, use two shares 

for the square scalar to have five shares in the 
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beginning of the second phase. Use three shares for 

the inverse linear map of the tower-field S-box 

since the multiplication outputs three shares. For all 

the linear operations, the shared functions are 

created as instantiations of the unshared function 

for the first share and as unshared function without 

the constant term for the other shares. 

 
 

Fig. 4. S-box of the adjusted implementation. 

 

 
 

Fig. 5. S-box of the nimble implementation. 

 

Adjusted Implementation:  

As mentioned in the earlier sections, the 

only difference between the raw and the adjusted 

implementation is that the adjusted implementation 

requires at least three shares for all the blocks 

including the linear operations in the S-box. For 

that reason, the shared square scaler circuit is 

instantiated with three shares. This S-box also 

requires 44-bits of randomness per iteration. 

 

 Nimble Implementation:  

Use fresh randomness at the end of the first 

phase to satisfy uniformity during the combination 

of the square scaler’s and the multiplier’s outputs, 

and after the inverter to break the dependency 

between the inputs of the multipliers in the third 

phase. Since these remasking steps conserve the 

uniformity property and the security of each block 

is achieved only by the correctness and non 

completeness properties can discard the uniformity 

property and implement these nonlinear functions 

with the smallest number of shares n s.t. n > d, i.e., 

n = d + 1,where d is the degree of the unshared 

functions.  

 

V.RESULTS 

Simulation. 

  
RTL Schematic. 

 
Design Summary. 

 
Timing Summary. 
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VI.CONCLUSION 

Three different versions of TIs of AES. We 

show that it is possible to achieve first-order DPA 

resistance with non uniform shared functions if 

remasking is applied properly. In the case of AES, 

our “non uniform” nimble implementation 

requires less randomness than our “uniform” raw 

implementation, due to the decreased number of 

shares. However, for other algorithms and other S-

boxes, remasking may increase the amount of 

randomness required. This idea can be used to 

trade-off between the randomness and area 

requirements. Moreover, we empirically confirm 

that increasing the number of shares has a 

significant impact on the performance of higher-

order attacks, which provides another trade-off 

between area and DPA resistance. Our most 

efficient implementation is approximately 8 k GE 

small and requires only 32 bits of fresh randomness 

per S-box calculation, which is a significant 

improvement over all previous works. 
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