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ABSTRACT 

Several techniques have been proposed to accurately predict software defects. These techniques 

generally exploit characteristics of the code artefacts (e.g., size, complexity, etc.) and/or of the 

process adopted during their development and maintenance (e.g., the number of developers 

working on a component) to spot out components likely containing bugs. While these bug 

prediction models achieve good levels of accuracy, they mostly ignore the major role played by 

human-related factors in the introduction of bugs. Previous studies have demonstrated that 

focused developers are less prone to introduce defects than non-focused developers. According 

to this observation, software components changed by focused developers should also be less 

error prone than components changed by less focused developers. We capture this observation by 

measuring the scattering of changes performed by developers working on a component and use 

this information to build a bug prediction model. Such a model has been evaluated on 26 systems 

and compared with four competitive techniques. The achieved results show the superiority of our 

model, and its high complementarily with respect to predictors commonly used in the literature. 

Based on this result, we also show the results of a “hybrid” prediction model combining our 

predictors with the existing ones. 

 

1. INTRODUCTION 

Bug prediction techniques are used to 

identify areas of software systems that are 

more likely to contain bugs. These 

prediction models represent an important aid 

when the resources available for testing are 

scarce, since they can indicate where to 

invest such resources. The scientific 
community has developed several bug 

prediction models that can be roughly 

classified into two families, based on the 

information they exploit to discriminate 

between “buggy” and “clean” code 

components. The first set of techniques 
exploits product metrics (i.e., metrics 

capturing intrinsic characteristics of the code 

components, like their size and complexity) 

[1], [2], [3], [4], [5], while the second one 

focuses on process metrics (i.e., metrics 

capturing specific aspects of the 
development process, like the frequency of 

changes performed to code components) [6], 

[7], [8], [9], [10], [11], [12]. While some 

studies highlighted the superiority of these 
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latter with respect to the product metric 

based techniques [7], [13], [11] there is a 

general consensus on the fact that no 

technique is the best in all contexts [14], 

[15]. For this reason, the research 

community is still spending effort in 

investigating under which circumstances and 

during which coding activities developers 

tend to introduce bugs (see e.g., [16], [17], 

[18], [19], [20], [21], [22]). Some of these 

studies have highlighted the central role 

played by developer-related factors in the 

introduction of bugs.In particular, Eyolfson 

et al. [17] showed that more experienced 

developers tend to introduce less faults in 

software systems. Rahman and Devanbu 

[18] partly contradicted the study by 

Eyolfson et al. by showing that the 

experience of a developer has no clear link 

with the bug introduction. Bird et al. [20] 

found that high levels of ownership are 

associated with fewer bugs. Finally, Posnett 

et al. [22] showed that focused developers 

(i.e., developers focusing their attention on a 

specific part of the system) introduce fewer 
bugs than unfocused developers. Although 

such studies showed the potential of human-

related factor sin bug 

prediction,thisinformation is not captured in 

state-of-the-art bug prediction models based 

on process metrics extracted from version 

history. Indeed, previous bug prediction 

models exploit predictors based on (i) the 

number of developers working on a code 

component [9] [10]; (ii) the analysis of 

changeproneness [13] [11] [12]; and (iii) the 

entropy of changes [8]. Thus, despite the 

previously discussed finding by Posnett et 

al. [22], none of the proposed bug prediction 

models considers how focused the 

developers performing changes are and how 

scattered these changes are. In our previous 

work [23] we studied the role played by 

scattered changes in bug prediction. We 

defined two measures, namely the 
developer’s structural and semantic 

scattering. The first assesses how 
“structurally far” in the software project the 

code components modified by a developer in 

a given time period are.The “structural 

distance” between two code components is 

measured as the number of subsystems one 

needs to cross in order to reach one 

component from the other. The second 

measure (i.e., the semantic scattering) is 

instead meant to capture how much spread 

in terms of implemented responsibilities the 

code components modified by a developer in 
a given time period are. The conjecture 

behind the proposed metrics is that high 

levels of structural and semantic scattering 

make the developer more error-prone. To 

verify this conjecture, we built two 

predictors exploiting the proposed measures, 

and we used them in a bug prediction model. 

The results achieved on five software 
systems showed the superiority of our model 

with respect to (i) the Basic Code Change 

Model (BCCM) built using the entropy of 

changes [8] and (ii) a model using the 

number of developers working on a code 

component as predictor [9] [10]. Most 

importantly, the two scattering measures 

showed a high degree of complementarity 

with the measures exploited by the baseline 

prediction models. In this paper, we extend 
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our previous work [23] to further investigate 

the role played by scattered changes in bug 

prediction. In particular we: 1) Extend the 

empirical evaluation of our bug prediction 

model by considering a set of 26 systems. 2) 

Compare our model with two additional 

competitive approaches, i.e., a prediction 

model based on the focus metrics proposed 

by Posnett et al. [22] and a prediction model 

based on structural code metrics [24], that 

together with the previously considered 

models, i.e., the BCCM proposed by Hassan 

[8] and the one proposed by Ostrand et al. 

[9] [10], lead to a total of four different 

baselines considered in our study. 3) Devise 

and discuss the results of a hybrid bug 

prediction model, based on the best 

combination of predictors exploited by the 

five prediction models experimented in the 
paper. 4) Provide a comprehensive 

replication package [25] including all the 

raw data and working data sets of our 

studies. The achieved results confirm the 
superiority of our model, achieving a F-

Measure 10.3% higher, on average, than the 

change entropy model [8], 53.7% higher, on 

average, with respect to what achieved by 

exploiting the number of developers 

working on a code component as predictor 

[9], 13.3% higher, on average, than the 

FMeasure obtained by using the developers’ 
focus metric by Posnett et al. [22] as 

predictor, and 29.3% higher, on average, 

with respect to the prediction model built on 

top of product metrics [1]. The two 

scattering measures confirmed their 
complementarity with the metrics used by 

the alternative prediction models. Thus, we 

devised a “hybrid”model providing an 

average boost inprediction accuracy (i.e., F-

Measure) of +5% with respect to the best 

performing model (i.e., the one proposed in 

this paper). 

II. EXISTING SYSTEM 

To aid in finding appropriate developers, 

automatic bug triaging approaches have 

been proposed in the existing. Many of these 

approaches use the vector space model 

(VSM) to represent a bug report, i.e., a bug 

report is treated as a vector of terms (words) 

and their counts. However, developers often 

use various terms to express the same 

meaning. The same term can also carry 

different meanings depending on the 

context. These synonymous and polysemous 

words cannot be captured by VSM. 

Various topic modeling algorithms 

are proposed in the literature including 

Latent Semantic Indexing/Analysis (LSA), 

probabilistic LSA (pLSA), and Latent 

Dirichlet Allocation (LDA). Among the 

three, LDA is the most recently proposed 

and it addresses the limitations of LSA and 

pLSA.  

DISADVANTAGES OF EXISTING 

SYSTEM: 

LDA considers a document as a random 

mixture of latent topics, where a topic is a 

random mixture of terms. One or few 

features can be only taken into 

consideration. Lower accuracy. More 

complex, More time taken 

III. PROPOSED SYSTEM: 

We extend LDA and propose a new topic 

model named multi-feature topic model 

(MTM) for the bug triaging problem. Since 
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a bug report has multiple features (e.g., 

product affected by the bug, component 

affected by the bug, etc.), MTM considers 

the features of a bug report when it converts 

terms in the textual description of the report 

(i.e., texts in the summary and description 

fields of the report) to their corresponding 

topics in the topic space. Given a bug report 

with a particular feature combination (i.e., 

product component combination), MTM 

converts a word in the bug report, to a topic. 

We refer to a feature as a categorical 

field in a bug report that a bug reporter can 

fill when the reporter submits a bug report. 

These fields include the product, 

component, reporter, priority, severity, OS, 

version, and platform fields. We exclude the 

natural language descriptions in the bug 

reports, which includes the contents of the 

summary and description fields, as the 

features since they are not categorical in 

nature.  

In this paper, we use the product-

component combination as the input feature 

combination, since product and component 

are two of the most important features that 

describe a bug. Given a bug report with a 

particular feature combination, MTM 

converts a term in the bug report to a topic 

by putting special emphasis on the 

appearances of the word in bug reports with 

the same feature combination, without 

ignoring the word appearances in all other 

bug reports. 

ADVANTAGES OF PROPOSED 

SYSTEM: 

MTM considers each combination of 

features as a random mixture of latent 

topics, where a topic is a random mixture of 

terms.  MTM is an extensible topic model, 

where one or more features can be taken into 

consideration. We propose a new approach 

for bug triaging which leverages MTM. We 

take as input a training set of bug reports 

(whose fixers are known) and a new bug 

report whose fixer is to be predicted.  Our 

approach, named TopicMiner MTM 

computes the affinity of a developer to a 

new bug report, based on the reports that the 

developer fixed before. To do this, we 

compare the topics that appear in the new 

bug report with those in the old reports that 

the developer has fixed before 

IV. MODULES 

4.1 Admin 

In this module, the Admin has to 

login by using valid user name and 

password. After login successful he can do 

some operations such as View all Project 

Developers and Authorize, View all 

Managers and Authorize, View all Team 

Members based on project, View all Bugs 

details from team members and manager and 

given solution with req date and res date

 , View number of time occures same 

Bug for a project and give link to show in 

Chart, View No.Of team members for each 

project assigned in Chart. 

4.1.1 View and Authorize Users 

In this module, the admin can view 

the list of users who all registered. In this, 

the admin can view the user’s details such 

as, user name, email, address and admin 

authorizes the users. 
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4.2 Manager 

In this module, there are n numbers 

of managers are present. Manager should 

register before doing any operations. Once 

manager registers, their details will be stored 

to the database.  After registration 

successful, he has to login by using 

authorized user name and password. Once 

Login is successful manager will do some 

operations like View all Team Members 

based on project, Add Projects with Project 

name and start date and end date,expected 

date, View all employees and select emp to 

Add Project, View all added project details 

and give edit option(proj desc,proj module 

name,Add Proj Sub modules), View all team 

members defects and give solution or allote 

to other team members, Add extension dates 

for the project to deliver,  View all projects 

status from team members, View all  

complexity of the project while developing. 

4.3 Project Developers 

In this module, there are n numbers 

of users are present. User should register 

before doing any operations. Once user 

registers, their details will be stored to the 

database.  After registration successful, he 

has to login by using authorized user name 

and password. Once Login is successful user 

will do some operations like View Your 

Profile with company Name,View all 

Assigned Projects with all details,Set defects 

and send to corresponding team member,Set 

defects and send to corresponding team 

manager,view all solutions based on team 

member and team manager,View all projects 

and select your projects to show the status 

like Open,closed,Completed,Withdrawn 

,View all team members defects and give 

solution, View all assigned Projects 

extension details, add complexity of the 

project while developing. 

V. SYSTEM ARCHITECTURE 

 
VI . SCREEN SHOTOS 

 
Bug repository  
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View Bug Request 

 
Admin Home 

 
 

 

 

 

 

 

Bug Status and Report 

 
Over All 

 
VII. CONCLUSION 

We propose a new topic model based 

bug triaging approach, named TopicMiner, 

and a new topic model, named multi-feature 

topic model (MTM), which takes into 

consideration the features of a bug report 

when assigning topics to words in the report. 

We have evaluated our solution on 227,278 

bug reports from five software systems and 

demonstrate that TopicMiner MTM 

outperforms Bugzie, LDA-KL, SVM-LDA, 

LDA-Activity, and Yang et al.’s approach 

by substantial margins. 

In the future, we plan to improve the 

effectiveness of our approach further, and 
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investigate additional bug reports. Also, in 

this work, we merge the two features (i.e., 

product and component) as one composite 

feature (i.e., by creating a feature 

combination). Other ways of using the 

multiple features exist and we plan to 

explore them in a future work. We also plan 

to design a better topic model to predict 

fixers when the number of bug reports in a 

specific product component combination is 

small (e.g., by using a mixture of models 

which includes a general model that the 

approach can back off to when the number 

of bug reports in a specific product-

component combination is small). 
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