

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 1

IMPROVING AND AUTOMATED BUG PREDECTION SYSTEM

USING MACHINE LEARNING ALGORITHMS

1
K.JAGADHISH,

2
Dr.B.HARI BABU

1
M.TECH DEPT OF CSE, KAKINADA INSTITUTE OF TECHNOLOGICAL SCIENCES, RAMACHANDRAPURAM,

ANDHRAPRADESH, INDIA, 533255
2
ASSISTANT PROFESSOR, KAKINADA INSTITUTE OF TECHNOLOGICAL SCIENCES, RAMACHANDRAPURAM,

ANDHRAPRADESH, INDIA, 533255

ABSTRACT

Several techniques have been proposed to accurately predict software defects. These techniques

generally exploit characteristics of the code artefacts (e.g., size, complexity, etc.) and/or of the

process adopted during their development and maintenance (e.g., the number of developers

working on a component) to spot out components likely containing bugs. While these bug

prediction models achieve good levels of accuracy, they mostly ignore the major role played by

human-related factors in the introduction of bugs. Previous studies have demonstrated that

focused developers are less prone to introduce defects than non-focused developers. According

to this observation, software components changed by focused developers should also be less

error prone than components changed by less focused developers. We capture this observation by

measuring the scattering of changes performed by developers working on a component and use

this information to build a bug prediction model. Such a model has been evaluated on 26 systems

and compared with four competitive techniques. The achieved results show the superiority of our

model, and its high complementarily with respect to predictors commonly used in the literature.

Based on this result, we also show the results of a “hybrid” prediction model combining our

predictors with the existing ones.

1. INTRODUCTION

Bug prediction techniques are used to

identify areas of software systems that are

more likely to contain bugs. These

prediction models represent an important aid

when the resources available for testing are

scarce, since they can indicate where to

invest such resources. The scientific
community has developed several bug

prediction models that can be roughly

classified into two families, based on the

information they exploit to discriminate

between “buggy” and “clean” code

components. The first set of techniques
exploits product metrics (i.e., metrics

capturing intrinsic characteristics of the code

components, like their size and complexity)

[1], [2], [3], [4], [5], while the second one

focuses on process metrics (i.e., metrics

capturing specific aspects of the
development process, like the frequency of

changes performed to code components) [6],

[7], [8], [9], [10], [11], [12]. While some

studies highlighted the superiority of these

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 2

latter with respect to the product metric

based techniques [7], [13], [11] there is a

general consensus on the fact that no

technique is the best in all contexts [14],

[15]. For this reason, the research

community is still spending effort in

investigating under which circumstances and

during which coding activities developers

tend to introduce bugs (see e.g., [16], [17],

[18], [19], [20], [21], [22]). Some of these

studies have highlighted the central role

played by developer-related factors in the

introduction of bugs.In particular, Eyolfson

et al. [17] showed that more experienced

developers tend to introduce less faults in

software systems. Rahman and Devanbu

[18] partly contradicted the study by

Eyolfson et al. by showing that the

experience of a developer has no clear link

with the bug introduction. Bird et al. [20]

found that high levels of ownership are

associated with fewer bugs. Finally, Posnett

et al. [22] showed that focused developers

(i.e., developers focusing their attention on a

specific part of the system) introduce fewer
bugs than unfocused developers. Although

such studies showed the potential of human-

related factor sin bug

prediction,thisinformation is not captured in

state-of-the-art bug prediction models based

on process metrics extracted from version

history. Indeed, previous bug prediction

models exploit predictors based on (i) the

number of developers working on a code

component [9] [10]; (ii) the analysis of

changeproneness [13] [11] [12]; and (iii) the

entropy of changes [8]. Thus, despite the

previously discussed finding by Posnett et

al. [22], none of the proposed bug prediction

models considers how focused the

developers performing changes are and how

scattered these changes are. In our previous

work [23] we studied the role played by

scattered changes in bug prediction. We

defined two measures, namely the
developer’s structural and semantic

scattering. The first assesses how
“structurally far” in the software project the

code components modified by a developer in

a given time period are.The “structural

distance” between two code components is

measured as the number of subsystems one

needs to cross in order to reach one

component from the other. The second

measure (i.e., the semantic scattering) is

instead meant to capture how much spread

in terms of implemented responsibilities the

code components modified by a developer in
a given time period are. The conjecture

behind the proposed metrics is that high

levels of structural and semantic scattering

make the developer more error-prone. To

verify this conjecture, we built two

predictors exploiting the proposed measures,

and we used them in a bug prediction model.

The results achieved on five software
systems showed the superiority of our model

with respect to (i) the Basic Code Change

Model (BCCM) built using the entropy of

changes [8] and (ii) a model using the

number of developers working on a code

component as predictor [9] [10]. Most

importantly, the two scattering measures

showed a high degree of complementarity

with the measures exploited by the baseline

prediction models. In this paper, we extend

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 3

our previous work [23] to further investigate

the role played by scattered changes in bug

prediction. In particular we: 1) Extend the

empirical evaluation of our bug prediction

model by considering a set of 26 systems. 2)

Compare our model with two additional

competitive approaches, i.e., a prediction

model based on the focus metrics proposed

by Posnett et al. [22] and a prediction model

based on structural code metrics [24], that

together with the previously considered

models, i.e., the BCCM proposed by Hassan

[8] and the one proposed by Ostrand et al.

[9] [10], lead to a total of four different

baselines considered in our study. 3) Devise

and discuss the results of a hybrid bug

prediction model, based on the best

combination of predictors exploited by the

five prediction models experimented in the
paper. 4) Provide a comprehensive

replication package [25] including all the

raw data and working data sets of our

studies. The achieved results confirm the
superiority of our model, achieving a F-

Measure 10.3% higher, on average, than the

change entropy model [8], 53.7% higher, on

average, with respect to what achieved by

exploiting the number of developers

working on a code component as predictor

[9], 13.3% higher, on average, than the

FMeasure obtained by using the developers’
focus metric by Posnett et al. [22] as

predictor, and 29.3% higher, on average,

with respect to the prediction model built on

top of product metrics [1]. The two

scattering measures confirmed their
complementarity with the metrics used by

the alternative prediction models. Thus, we

devised a “hybrid”model providing an

average boost inprediction accuracy (i.e., F-

Measure) of +5% with respect to the best

performing model (i.e., the one proposed in

this paper).

II. EXISTING SYSTEM

To aid in finding appropriate developers,

automatic bug triaging approaches have

been proposed in the existing. Many of these

approaches use the vector space model

(VSM) to represent a bug report, i.e., a bug

report is treated as a vector of terms (words)

and their counts. However, developers often

use various terms to express the same

meaning. The same term can also carry

different meanings depending on the

context. These synonymous and polysemous

words cannot be captured by VSM.

Various topic modeling algorithms

are proposed in the literature including

Latent Semantic Indexing/Analysis (LSA),

probabilistic LSA (pLSA), and Latent

Dirichlet Allocation (LDA). Among the

three, LDA is the most recently proposed

and it addresses the limitations of LSA and

pLSA.

DISADVANTAGES OF EXISTING

SYSTEM:

LDA considers a document as a random

mixture of latent topics, where a topic is a

random mixture of terms. One or few

features can be only taken into

consideration. Lower accuracy. More

complex, More time taken

III. PROPOSED SYSTEM:

We extend LDA and propose a new topic

model named multi-feature topic model

(MTM) for the bug triaging problem. Since

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 4

a bug report has multiple features (e.g.,

product affected by the bug, component

affected by the bug, etc.), MTM considers

the features of a bug report when it converts

terms in the textual description of the report

(i.e., texts in the summary and description

fields of the report) to their corresponding

topics in the topic space. Given a bug report

with a particular feature combination (i.e.,

product component combination), MTM

converts a word in the bug report, to a topic.

We refer to a feature as a categorical

field in a bug report that a bug reporter can

fill when the reporter submits a bug report.

These fields include the product,

component, reporter, priority, severity, OS,

version, and platform fields. We exclude the

natural language descriptions in the bug

reports, which includes the contents of the

summary and description fields, as the

features since they are not categorical in

nature.

In this paper, we use the product-

component combination as the input feature

combination, since product and component

are two of the most important features that

describe a bug. Given a bug report with a

particular feature combination, MTM

converts a term in the bug report to a topic

by putting special emphasis on the

appearances of the word in bug reports with

the same feature combination, without

ignoring the word appearances in all other

bug reports.

ADVANTAGES OF PROPOSED

SYSTEM:

MTM considers each combination of

features as a random mixture of latent

topics, where a topic is a random mixture of

terms. MTM is an extensible topic model,

where one or more features can be taken into

consideration. We propose a new approach

for bug triaging which leverages MTM. We

take as input a training set of bug reports

(whose fixers are known) and a new bug

report whose fixer is to be predicted. Our

approach, named TopicMiner MTM

computes the affinity of a developer to a

new bug report, based on the reports that the

developer fixed before. To do this, we

compare the topics that appear in the new

bug report with those in the old reports that

the developer has fixed before

IV. MODULES

4.1 Admin

In this module, the Admin has to

login by using valid user name and

password. After login successful he can do

some operations such as View all Project

Developers and Authorize, View all

Managers and Authorize, View all Team

Members based on project, View all Bugs

details from team members and manager and

given solution with req date and res date

 , View number of time occures same

Bug for a project and give link to show in

Chart, View No.Of team members for each

project assigned in Chart.

4.1.1 View and Authorize Users

In this module, the admin can view

the list of users who all registered. In this,

the admin can view the user’s details such

as, user name, email, address and admin

authorizes the users.

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 5

4.2 Manager

In this module, there are n numbers

of managers are present. Manager should

register before doing any operations. Once

manager registers, their details will be stored

to the database. After registration

successful, he has to login by using

authorized user name and password. Once

Login is successful manager will do some

operations like View all Team Members

based on project, Add Projects with Project

name and start date and end date,expected

date, View all employees and select emp to

Add Project, View all added project details

and give edit option(proj desc,proj module

name,Add Proj Sub modules), View all team

members defects and give solution or allote

to other team members, Add extension dates

for the project to deliver, View all projects

status from team members, View all

complexity of the project while developing.

4.3 Project Developers

In this module, there are n numbers

of users are present. User should register

before doing any operations. Once user

registers, their details will be stored to the

database. After registration successful, he

has to login by using authorized user name

and password. Once Login is successful user

will do some operations like View Your

Profile with company Name,View all

Assigned Projects with all details,Set defects

and send to corresponding team member,Set

defects and send to corresponding team

manager,view all solutions based on team

member and team manager,View all projects

and select your projects to show the status

like Open,closed,Completed,Withdrawn

,View all team members defects and give

solution, View all assigned Projects

extension details, add complexity of the

project while developing.

V. SYSTEM ARCHITECTURE

VI . SCREEN SHOTOS

Bug repository

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 6

View Bug Request

Admin Home

Bug Status and Report

Over All

VII. CONCLUSION

We propose a new topic model based

bug triaging approach, named TopicMiner,

and a new topic model, named multi-feature

topic model (MTM), which takes into

consideration the features of a bug report

when assigning topics to words in the report.

We have evaluated our solution on 227,278

bug reports from five software systems and

demonstrate that TopicMiner MTM

outperforms Bugzie, LDA-KL, SVM-LDA,

LDA-Activity, and Yang et al.’s approach

by substantial margins.

In the future, we plan to improve the

effectiveness of our approach further, and

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 7

investigate additional bug reports. Also, in

this work, we merge the two features (i.e.,

product and component) as one composite

feature (i.e., by creating a feature

combination). Other ways of using the

multiple features exist and we plan to

explore them in a future work. We also plan

to design a better topic model to predict

fixers when the number of bug reports in a

specific product component combination is

small (e.g., by using a mixture of models

which includes a general model that the

approach can back off to when the number

of bug reports in a specific product-

component combination is small).

 REFERENCES

 [1] V. Basili, L. Briand, and W. Melo, “A

validation of object-oriented design metrics

as quality indicators,” Software Engineering,

IEEE Transactions on, vol. 22, no. 10, pp.

751–761, Oct 1996.

 [2] T. Gyim´othy, R. Ferenc, and I. Siket,

“Empirical validation of object-oriented

metrics on open source software for fault

prediction,” IEEE Transactions on Software

Engineering (TSE), vol. 31, no. 10, pp. 897–
910, 2005.

[3] N. Ohlsson and H. Alberg, “Predicting

fault-prone software modules in telephone

switchess,” Software Engineering, IEEE

Transactions on, vol. 22, no. 12, p. 886894,

1996.

 [4] N. Nagappan and T. Ball, “Static

analysis tools as early indicators of pre-

release defect density,” in Proceedings of

the 27th International Conference on

Software Engineering, ser. ICSE ’05. New

York, NY, USA: ACM, 2005, pp. 580–586.

[Online]. Available:

http://doi.acm.org/10.1145/1062455.106255

8

[5] T. Zimmermann, R. Premraj, and A.

Zeller, “Predicting defects for eclipse,” in

Proceedings of the Third International

Workshop on Predictor Models in Software

Engineering, ser. PROMISE ’07.

Washington, DC, USA: IEEE Computer

Society, 2007, pp. 9–. [Online]. Available:

http://dx.doi.org/10.1109/PROMISE.2007.1

0

[6] A. N. Taghi M. Khoshgoftaar, Nishith

Goel and J. McMullan, “Detection of

software modules with high debug code

churn in a very large legacy system,” in

Software Reliability Engineering. IEEE,

1996, pp. 364–371.

 [7] J. S. M. Todd L. Graves, Alan F. Karr

and H. P. Siy, “Predicting fault incidence

using software change history,” Software

Engineering, IEEE Transactions on, vol. 26,

no. 7, pp. 653–661, 2000.

 [8] A. E. Hassan, “Predicting faults using

the complexity of code changes,” in ICSE.

Vancouver, Canada: IEEE Press, 2009, pp.

78–88.

[9] R. Bell, T. Ostrand, and E. Weyuker,

“The limited impact of individual developer

data on software defect prediction,”
Empirical Software Engineering, vol. 18, no.

3, pp. 478–505, 2013. [Online]. Available:

http://dx.doi.org/10.1007/s10664-011-9178-

4

[10] T. J. Ostrand, E. J. Weyuker, and R. M.

Bell, “Programmer-based fault prediction,”
in Proceedings of the 6th International

Conference on Predictive Models in

http://doi.acm.org/10.1145/1062455.1062558
http://doi.acm.org/10.1145/1062455.1062558
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1007/s10664-011-9178-4
http://dx.doi.org/10.1007/s10664-011-9178-4

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 8

Software Engineering, ser. PROMISE ’10.

New York, NY, USA: ACM, 2010, pp.

19:1–19:10. [Online]. Available:

http://doi.acm.org/10.1145/1868328.186835

7

[11] R. Moser, W. Pedrycz, and G. Succi,

“Analysis of the reliability of a subset of

change metrics for defect prediction,” in

Proceedings of the Second ACM-IEEE

International Symposium on Empirical

Software Engineering and Measurement,

ser. ESEM ’08. New York, NY, USA:

ACM, 2008, pp. 309–311. [Online].

Available:

http://doi.acm.org/10.1145/1414004.141406

3

 [12] R. M. Bell, T. J. Ostrand, and E. J.

Weyuker, “Does measuring code change

improve fault prediction?” in Proceedings of

the 7th International Conference on

Predictive Models in Software Engineering,

ser. Promise ’11. New York, NY, USA:

ACM, 2011, pp. 2:1–2:8. [Online].

Available:

http://doi.acm.org/10.1145/2020390.202039

2

[13] W. P. Raimund Moser and G. Succi, “A

comparative analysis of the efficiency of
change metrics and static code attributes for

defect prediction,” in International

Conference on Software Engineering

(ICSE), ser. ICSE ’08, 2008, pp. 181–190.

[14] N. Nagappan, T. Ball, and A. Zeller,

“Mining metrics to predict component

failures,” in Proceedings of the 28th

International Conference on Software

Engineering, ser. ICSE ’06. New York, NY,

USA: ACM, 2006, pp. 452–461. [Online].

Available: http:

//doi.acm.org/10.1145/1134285.1134349

[15] M. DAmbros, M. Lanza, and R.

Robbes, “Evaluating defect prediction

approaches: a benchmark and an extensive

comparison,” Empirical Software

Engineering, vol. 17, no. 4, p. 531577, 2012.

[16] J. Sliwerski, T. Zimmermann, and A.

Zeller, “Don’t program on fridays! how to

locate fix-inducing changes,” in Proceedings

of the 7th Workshop Software

Reengineering, May 2005.

[17] L. T. Jon Eyolfso and P. Lam, “Do time

of day and developer experience affect

commit bugginess?” in Proceedings of the

8th Working Conference on Mining

Software Repositories, ser. MSR ’11, 2011,

pp. 153–162.

[18] F. Rahman and P. Devanbu,

“Ownership, experience and defects: a fine-

grained study of authorship,” in Proceedings

of the 33rd International Conference on

Software Engineering, ser. ICSE ’11, 2011,

pp. 491–500.

[19] E. J. W. J. Sunghun Kim and Y. Zhang,

“Classifying software changes: Clean or

buggy?” IEEE Transactions on Software

Engineering (TSE), vol. 34, no. 2, pp. 181–
196, 2008.

[20] C. Bird, N. Nagappan, B. Murphy, H.

Gall, and P. Devanbu, “Don’t touch my

code!: Examining the effects of ownership

on software quality,” in Proceedings of the

19th ACM SIGSOFT Symposium and the

13th European Conference on Foundations

of Software Engineering, ser. ESEC/FSE

’11. ACM, 2011, pp. 4–14.

http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/1868328.1868357
http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/2020390.2020392
http://doi.acm.org/10.1145/2020390.2020392

Volume 11, Issue 01, Jan 2021 ISSN 2581 – 4575 Page 9

 [21] G. Bavota, B. De Carluccio, A. De

Lucia, M. Di Penta, R. Oliveto, and O.

Strollo, “When does a refactoring induce

bugs? an empirical study,” in Proceedings of

the 12th International Working Conference

on Source Code Analysis and Manipulation,

ser. SCAM ’12, 2012, pp. 104–113.

