

PREDICTIVE ANALYSIS FOR BIG MART SALES USING MACHINE LEARNING ALGORITHMS

Y.SRINIVASA RAJU, Kancharla Venkata Hemanth

Associate professor,Department of MCA srinivasaraju.y@gmail.com B V Raju College, Bhimavaram

(2285351047)Department of MCA venkatahemanthkancharla984@gmail.com B V Raju College, Bhimavaram

ABSTRACT

Currently, supermarket run-centers, Big Marts keep track of each individual item's sales data in order to anticipate potential consumer demand and update inventory management. Anomalies and general trends are often discovered by mining the data warehouse's data store. For retailers like Big Mart, the resulting data can be used to forecast future sales volume using various machine learning techniques like big mart. A predictive model was developed using Xgboost, Linear regression, Polynomial regression, and Ridge regression techniques for forecasting the sales of a business such as Big -Mart, and it was discovered that the model outperforms existing models.

Keywords: supermarket, sales data, inventory management, anomaly detection, machine learning techniques, predictive modeling, sales forecasting

INTRODUCTION

The retail industry, particularly supermarket chains like Big Mart, operates in a dynamic environment where anticipating consumer demand and efficiently managing inventory are crucial for success. In recent years, advancements in technology have enabled supermarkets to leverage vast amounts of sales data to gain insights into consumer behavior and market trends. Big Mart, like many other retailers, utilizes sophisticated data warehousing and analytics tools to mine its sales data and uncover valuable patterns and insights [1]. By tracking each individual item's sales data, supermarkets can identify anomalies and detect general trends, which are essential for effective inventory management and decision-making [2]. One of the primary objectives for retailers like Big Mart is to forecast future sales volume accurately. Sales forecasting plays a pivotal role in inventory planning, pricing strategies, and overall business performance [3]. Traditionally, forecasting methods relied on statistical techniques and historical data analysis. However, with the advent of machine learning algorithms, retailers now have access to more advanced predictive analytics capabilities [4]. Machine learning techniques offer the ability to analyze complex datasets and identify nonlinear relationships between variables, allowing for more accurate and dynamic sales forecasts [5].

In this context, the application of machine learning algorithms for predictive analysis in retail has gained significant attention. By leveraging various machine learning techniques, retailers can develop predictive models that capture the underlying patterns and trends in sales data, enabling them to make more informed decisions [6]. For instance, algorithms such as Xgboost, Linear regression, Polynomial regression, and Ridge regression have been widely used to forecast sales volume in retail settings [7]. These algorithms offer different advantages and are suitable for different types of data, allowing retailers to choose the most appropriate model for their specific needs [8]. The focus of this study is to develop a predictive model for forecasting sales volume in a retail environment, specifically targeting a supermarket chain like Big Mart. By applying machine learning algorithms to analyze historical sales data, the aim is to build a model that can accurately predict future sales trends [9]. The study considers various factors that may

influence sales, including seasonal trends, promotional activities, and external market conditions. Through rigorous analysis and experimentation, the effectiveness of different machine learning techniques, including Xgboost, Linear regression, Polynomial regression, and Ridge regression, is evaluated [10].

Fig 1. System Architecture

The ultimate goal of this research is to provide retailers like Big Mart with a robust and reliable predictive analytics tool that can enhance decision-making and improve business performance [11]. By leveraging advanced machine learning algorithms, retailers can gain deeper insights into consumer behavior and market dynamics, allowing them to optimize inventory management, pricing strategies, and marketing campaigns [12]. Additionally, the development of accurate sales forecasting models can help retailers mitigate risks associated with inventory stockouts or overstocking, ultimately leading to improved customer satisfaction and profitability [13]. Through empirical validation and comparative analysis, this study aims to demonstrate the efficacy of machine learning-based predictive analytics in the retail sector and provide valuable insights for practitioners and researchers alike [14]. Overall, the research contributes to advancing the field of predictive analysis for retail sales and underscores the importance of leveraging data-driven approaches to drive business success in the modern retail landscape [15].

LITERATURE SURVEY

The retail industry has undergone a significant transformation in recent years, marked by the widespread adoption of advanced data analytics and machine learning techniques. Supermarket chains, such as Big Mart, have increasingly embraced data-driven approaches to enhance various facets of their operations, particularly in sales forecasting and

A peer reviewed international journal ISSN: 2457-0362 www.ijarst.in

inventory management. By meticulously tracking the sales data of individual items, Big Marts can extract valuable insights into consumer behavior and market trends, enabling them to anticipate potential fluctuations in demand and adjust inventory levels accordingly. This shift towards data-driven decision-making reflects a broader trend within the retail sector, where companies are leveraging sophisticated data warehousing and analytics tools to gain a competitive edge. An integral component of leveraging sales data for predictive analysis involves the identification of anomalies and the exploration of general trends through data mining techniques. By delving into the wealth of information stored within the data warehouse, retailers like Big Mart can develop a comprehensive understanding of sales patterns and dynamics. These insights play a pivotal role in guiding strategic decisions related to inventory management, pricing strategies, and marketing campaigns. Furthermore, by harnessing the power of machine learning algorithms, retailers can construct predictive models that forecast future sales volumes with greater accuracy.

The application of machine learning techniques in sales forecasting has garnered significant attention within the retail industry due to its potential to unlock valuable insights from large and complex datasets. Machine learning algorithms offer the capability to analyze intricate patterns and relationships that may elude traditional statistical methods. Algorithms such as Xgboost, Linear regression, Polynomial regression, and Ridge regression have emerged as popular choices for developing predictive models in retail settings. These algorithms empower retailers to capture nonlinear relationships between variables and make precise predictions regarding future sales trends. The development of predictive models for sales forecasting entails several critical steps, starting with data preprocessing and feature selection. Data preprocessing involves cleaning and transforming raw sales data to ensure its quality and consistency, including handling missing values, removing outliers, and normalizing variables. Feature selection plays a pivotal role in identifying relevant variables that contribute to sales forecasting, which subsequently serve as input variables for the predictive model, influencing its accuracy and performance.

Following data preprocessing and feature selection, the next step involves training the predictive model using machine learning algorithms. During the training phase, the model learns from historical sales data to discern patterns and relationships between input variables and sales volume. Various machine learning techniques, including supervised and unsupervised learning, may be employed based on the nature of the data and the objectives of the forecasting task. Supervised learning algorithms, such as Xgboost and Linear regression, are trained on labeled data, while unsupervised learning algorithms, such as clustering, uncover hidden patterns within the data. Once trained, the predictive model undergoes evaluation to assess its performance and predictive accuracy. This entails testing the model on a separate dataset, known as the validation set, to evaluate its generalization capabilities. Performance metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) are commonly used to quantify the model's predictive performance. Additionally, techniques such as cross-validation may be employed to ensure the robustness and reliability of the predictive model.

In summary, the literature survey highlights the growing significance of predictive analysis in the retail sector, particularly in sales forecasting and inventory management. By leveraging machine learning algorithms and advanced analytics techniques, retailers like Big Mart can gain invaluable insights into consumer behavior and market dynamics, empowering them to make informed decisions and maintain a competitive edge in today's dynamic retail landscape. Continued research and innovation in predictive analytics hold the promise of further enhancing the efficiency and effectiveness of retail operations, ultimately leading to improved customer satisfaction and business performance.

PROPOSED SYSTEM

JARST

Supermarkets like Big Mart operate in a dynamic environment where understanding consumer behavior and predicting sales trends are crucial for effective inventory management and business success. To address this challenge, we propose a predictive analysis system that leverages machine learning algorithms to forecast future sales volume based on historical sales data. The system begins by collecting and organizing sales data from each individual item sold at Big Mart stores. This data serves as the foundation for the predictive modeling process, enabling us to gain insights into consumer preferences, identify patterns, and anticipate demand fluctuations. The first step in our proposed system

International Journal For Advanced Research In Science & Technology

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

is data preprocessing, where we clean and prepare the raw sales data for analysis. This involves handling missing values, removing outliers, and normalizing variables to ensure the accuracy and reliability of the dataset. By addressing data quality issues upfront, we can mitigate potential biases and inconsistencies that may impact the performance of the predictive model. Once the data is preprocessed, we move on to feature selection, where we identify the most relevant variables that influence sales volume. This step is crucial for optimizing the predictive model's performance and reducing computational complexity by focusing on the most informative features.

With the preprocessed data and selected features in hand, we proceed to model training, where we develop predictive models using various machine learning algorithms. Our approach involves experimenting with different algorithms, including Xgboost, Linear regression, Polynomial regression, and Ridge regression, to identify the most effective technique for forecasting sales. Each algorithm offers unique strengths and capabilities, allowing us to explore different modeling approaches and select the one that best suits the characteristics of the sales data. During model training, we split the dataset into training and validation sets to evaluate the performance of each model and fine-tune its parameters for optimal results. Once the predictive models are trained, we evaluate their performance using appropriate metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). These metrics provide insights into the accuracy and reliability of the models, allowing us to assess their predictive capabilities and identify areas for improvement. By comparing the performance of different models, we can select the most effective one for forecasting sales volume at Big Mart stores. Additionally, we conduct sensitivity analysis to evaluate the robustness of the models and assess their performance under various scenarios and conditions.

In addition to evaluating the performance of individual models, we also explore ensemble learning techniques to further enhance predictive accuracy. Ensemble methods combine multiple models to produce a more robust and accurate prediction by leveraging the collective wisdom of diverse algorithms. By ensemble learning, we can harness the strengths of different models and mitigate the weaknesses inherent in any single approach. This approach allows us to achieve superior predictive performance compared to individual models, making it a valuable addition to our predictive analysis system. Once we have identified the most effective predictive model or ensemble of models, we deploy it to forecast future sales volume at Big Mart stores. The model generates predictions based on input data such as historical sales trends, seasonal variations, and external factors that may influence consumer behavior. These predictions provide valuable insights for inventory management, allowing Big Mart to optimize stock levels, plan promotions, and allocate resources more effectively. By leveraging machine learning algorithms for predictive analysis, Big Mart can enhance its operational efficiency, reduce costs, and ultimately improve customer satisfaction by ensuring the availability of products that meet consumer demand.

METHODOLOGY

Predictive analysis for Big Mart sales using machine learning algorithms involves a systematic methodology aimed at forecasting future sales volume based on historical sales data. The process begins with the collection and organization of sales data from each individual item sold at Big Mart stores. This data serves as the foundation for the predictive modeling process, enabling insights into consumer behavior and market trends. The first step in the methodology is data preprocessing, where the raw sales data is cleaned and prepared for analysis. This involves handling missing values, removing outliers, and normalizing variables to ensure the accuracy and reliability of the dataset. By addressing data quality issues upfront, potential biases and inconsistencies that may impact the performance of the predictive model are mitigated. Once the data is preprocessed, feature selection is performed to identify the most relevant variables that influence sales volume. This step optimizes the predictive model's performance and reduces computational complexity by focusing on the most informative features.

With the preprocessed data and selected features, the next step is model training, where predictive models are developed using various machine learning algorithms. The methodology involves experimenting with different algorithms, including Xgboost, Linear regression, Polynomial regression, and Ridge regression, to identify the most effective technique for forecasting sales. Each algorithm offers unique strengths and capabilities, allowing exploration

International Journal For Advanced Research In Science & Technology

A peer reviewed international journal ISSN: 2457-0362

www.ijarst.in

of different modeling approaches to select the one that best suits the characteristics of the sales data. During model training, the dataset is split into training and validation sets to evaluate the performance of each model and fine-tune its parameters for optimal results. Once the predictive models are trained, their performance is evaluated using appropriate metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE). These metrics provide insights into the accuracy and reliability of the models, allowing assessment of their predictive capabilities and identification of areas for improvement. By comparing the performance of different models, the most effective one for forecasting sales volume at Big Mart stores is selected. Additionally, sensitivity analysis is conducted to evaluate the robustness of the models and assess their performance under various scenarios and conditions.

In addition to evaluating the performance of individual models, ensemble learning techniques are explored to further enhance predictive accuracy. Ensemble methods combine multiple models to produce a more robust and accurate prediction by leveraging the collective wisdom of diverse algorithms. By ensemble learning, the strengths of different models are harnessed, and the weaknesses inherent in any single approach are mitigated. This approach allows for superior predictive performance compared to individual models, making it a valuable addition to the predictive analysis methodology. Once the most effective predictive model or ensemble of models is identified, it is deployed to forecast future sales volume at Big Mart stores. The model generates predictions based on input data such as historical sales trends, seasonal variations, and external factors that may influence consumer behavior. These predictions provide valuable insights for inventory management, allowing Big Mart to optimize stock levels, plan promotions, and allocate resources more effectively. By leveraging machine learning algorithms for predictive analysis, Big Mart can enhance its operational efficiency, reduce costs, and ultimately improve customer satisfaction by ensuring the availability of products that meet consumer demand.

RESULTS AND DISCUSSION

The results of the predictive analysis for Big Mart sales using machine learning algorithms demonstrate the efficacy of the developed predictive model in forecasting future sales volume. By leveraging various machine learning techniques, including Xgboost, Linear regression, Polynomial regression, and Ridge regression, the predictive model achieved superior performance compared to existing models. Through extensive experimentation and evaluation, it was observed that the predictive model consistently produced accurate forecasts, enabling Big Mart to anticipate potential consumer demand and optimize inventory management strategies. Moreover, the predictive model demonstrated robustness across different scenarios and conditions, highlighting its reliability and effectiveness in real-world applications.

Furthermore, the discussion focuses on the comparative analysis of the predictive model's performance with respect to different machine learning algorithms. It was observed that while each algorithm exhibited unique strengths and weaknesses, ensemble learning techniques emerged as particularly effective in enhancing predictive accuracy. By combining multiple models, ensemble methods leveraged the complementary nature of diverse algorithms to produce more robust predictions. This approach not only mitigated the limitations inherent in individual models but also capitalized on their collective wisdom, resulting in superior forecasting capabilities. Additionally, sensitivity analysis revealed insights into the factors influencing the predictive model's performance, including the impact of variable selection, model parameters, and dataset characteristics. By systematically evaluating these factors, potential areas for model refinement and optimization were identified, paving the way for further improvements in predictive accuracy.

Fig 2. Result screenshot 1

	and mouth				200011	Autorett Tarei 1								
A CA	former 1 1	$\ \mathbf{u}\ + \ \mathbf{A}^{t}\ \mathbf{x}^{t}\ $ $\mathbf{I} + \ \underline{\omega}^{t}\ \frac{\mathbf{\Delta}^{t}}{\mathbf{\omega}^{t}} \cdot \mathbf{\Delta}^{t}$ tag	****	Strong Test Mittings & Center + and S	German 8 - %	A State Constant	Partiel a State - S Refe		in bije	E.	X satisfan ⊒ ra - ⊋Cow r	terra di	A	
	(* ()	5 PDA15												
11/A	8 I C	3 9	F	- H - H	4		- F - 3	M.	- 14	9	*	0		5
40038	13.3.1 doi: 741	0.033072 Household	MILERED OUTOIN	3000 Mieskum	Tier 5	Topermaniet Type3	1023.112							
NONE	10.5 (dur Pat	0.052627 Health an-	38.7538 OUTDER	1977.Hgt	Tier 3	Hopermarket Typed	758,012							
F59959	20.85 Reputer	0.094512-8+keds	104-5648 OUT010	1988	Ther 3	Srocery Store	201.7290	3136F = 12C	2					
1 F0784	Replan	0.002552 (JINALE FOD	196.9084 01/7027	1983 Medium	Tier 3	Supermarket Type3	3753.844							
04015	10.8 Loss 741	0.056763-Dairy	191 3642 OUT033	2004 Small	Tier 2	Oppermarket Type1	2091-279							
E POPUS	3.35 Kegular	0.061177 Meat	121 ESBX OUT046	2597 51149	THEFI	Supermarket Type1	3219-309							
5 10028	13.85 Regular	0.192099 Prumiand	202.8583 OUTDES	2004 Small	THEF 2	Tupermarket Type1	2553.795							
S.NCY50	30.25 Linix P41	6.005948 Househol-	180.097% OUT025	2000 Small	Tier 1	Supermarket Type1	3441,554							
E DRHST	17.6 Litter A#1	0.031302-56H Drmre	163.1526 OUT018	1287 (H)(7)	Tier 3	Supermerket Type1	3455.305							
PDT1E	26.7 Regular	6.10003 Snacs ?cci	18.8082 OUT020	2300	Tier I	Grocery Illore	10.2562							
10715	15 1.0m Feb	0.134501 Startiny Fc	125.8888.007068	3902	Tier 2	Supernarkel Type1	434.7792							
10630	8.83-Regular	8.000937 Shara Fod	53,8588 OUT033	2001 Smail	Tier 2	Supermarket Type3	501.6232							
B FOADE	Regular	0.073582 Dwiry	334.81% OUTU27	1987 Medium	THEF	Supermarket Type)	8188.739							
8 F0635	15.5 Regular	0.125685 Fruits and	178.3028 OUT045	1997 Small	Ther I	Supermarket Type1	1416.822							
HC107	Low Pet	0.031187 Others	19.54E OUT027	2553 Medium	Tier 3	Supermarket Type1	739.013							
E 0H049	3.835 (7	0.167681 Soft Drink	337,4384 OUT046	1997 Smail	Tier 1	Bopermarket Type1	715.0892							
1 10055	36.35 Low Put	0.1004087401-	118.2176 OUT017	2007	Tier.2	Tubermatter Type1	3336.463							
FORLS	15.5 Keputer	0.180624 Fruits and	147.0102 OUTD17	2207	Tier 2	Supermarket Type1	2772.394							
R NDMS4	17.7 Lour Fel	0.000121 Householi	125 2816 OUTUR	2004 Smail	THE?	Supermarket Type1	1780.349							
10 F03244	-Leve Part	0.06791 Fruits and	119.1608 GUT018	1583.5mail	THEF 2	Gracery Store	334.3616							
IS FDR25	13.85 Reputat	E 036583 Prosen Fo	161.225 OUTILS	2027	Ther 2	Supermarket Type1	1294.151							
12 FOR13	8.32 Love Fat	0.018611 Dairy	RUARSE CUTODA	2009 Mesilum	Tier 3	Supermarket Type2	2354.289							
DR:09	11.85 Love Fee	6.039971 Hwd Onni	40.8084 OUTD48	2597 Schail	Tier 1	Supermarket Type:	305/9112							
F054)	11 Reputer	beautions becceb.0	343,7512 OUTD18	2009 Medium	Tier 2	Supermannet Type2	1998.81							
NOCTH	17.35 Low Fat	E 097909 Haakttrami	343.119E OUTBAS	2000	Tier 2	Supermarket Type1	4097.333					time to be		
e e al Trans	102.7				_		(W)			-				T.
ady i							verage: emile	REAL PROPERTY OF	NAK BUDA	Sam 58	CHEDYS AR	a Cl-Cl_m	Ph (-)	

Fig 3. Result screenshot 2

RST		1	A pee	r reviewed international journal ISSN: 2457-0362	gy www.i
Service Prove	-	* +			o lai@ #
$\epsilon \rightarrow \times$	() 127.001.000	O/View, Remaine, Uniersal			* ÷ ± 1
			7		
	VIEW OLL DER	NOTE USERS IN			
	VIEW ALL REA	NOTE USERS IN ESTAD.	Hob No Count	try Stata City	
	VIEW GLL DET	note USERS III ESUAD Govind.1230gmail.com	Hob No Counts 9535060270 India	Ty State Oby Karnataka Bangalore	
	VIEW ALL DER Govinit Manjunath	NOTE VSERS III ENALL Gavind 1230gmail.com tmismanju130gmail.com	Hob No Count 9535060270 India 9535866270 India	<mark>ky Stata City</mark> Karnataka Bangatore Karnataka Bangatore	
	VIEW GLL DET	NOTE USERS III ESUUS Gavind.1230gmail.com tmksmanju130gmail.com tmksmanju130gmail.com	Hob No Count 9535866270 India 9535866270 India 9535866271 India	<mark>Karnataka Bengalore</mark> Karnataka Bengalore Karnataka Bengalore	
	VIEW ALL GET Govinst Manjunath Emissranju Arvind	nOTE USERS # E1/114 Govind, 1230gmail.com tmksmanju130gmail.com tmksmanju130gmail.com Arvind1238gmail.com	455 10 Count 9535866270 India 9535866270 India 9535866270 India 9535866270 India	ing Stata Oly Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore	
	VIEW RLL REA Govini Manjunath Imismanju Arvind Amar Amar	NOTE USERS IN EUTR Govind.1230gmail.com tmissmanju130gmail.com Arvind1230gmail.com Arvind1230gmail.com Anu1230gmail.com	Hob Ho S35866270 India 9535866270 India 9535866270 India 9535866270 India 9535865270 India	<mark>ry Stata Oly</mark> Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore	4
	VIEW ALL GES Govini Manjunath Imismanju Arvind Amar Anil Abhash	note usens m COLL Govind 1230gmail.com tmismanju130gmail.com Arvind1230gmail.com Arvind1230gmail.com Anii1230gmail.com Anii1230gmail.com	Hob No Count 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India	<mark>ry State City</mark> Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore	L
	VIEW OLL GET Govinit Manjunath Imissmanju Arvind Amar Anit Abilash Itumar	NOTE VSERS IN EMAD. Govind 123Bgmail.com tmksmanju13Bgmail.com Anvint123Bgmail.com Anu123Bgmail.com Ani123Bgmail.com Abitash123Bgmail.com	Hob No Counto 9535866270 India	ry State City Karnataka Bengatore Karnataka Bengatore Karnataka Bengatore Karnataka Bengatore Karnataka Bengatore Karnataka Bengatore Karnataka Bengatore	
	VIEW BLL GET Govint Manjunath Intesmanju Arvind Amar Amar Anit Ablash Kumar Golud	NOTE USERS III ESUAL Govind.1230gmail.com tmksmanju130gmail.com tmksmanju130gmail.com Arvind1230gmail.com Ani1230gmail.com Abitash1230gmail.com Kumar.1230gmail.com Kumar.1230gmail.com	Hob No Count 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India	State Otor Karnataka Bangalore Karnataka Bangalore	L
	VIEW GLL GET Govini Manjunath Linissmanju Arvind Amar Anil Abilash Kumar Gokut Santmb	NOTE VSERS III Covind, 1230gmail.com tmksmanju130gmail.com tmksmanju130gmail.com Arvind1230gmail.com Anti1230gmail.com Abilash1230gmail.com Solut1230gmail.com Solut1230gmail.com	Hob No Count 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India	Sana Oto Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore Karnataka Bangalore	L
	VIEW GLL GER Govini Manjunath Imisamanju Arvind Anii Abilash Kumar Golud Santash Amaresh	note users = ctitus Govind.1230gmail.com tmksmanju130gmail.com tmksmanju130gmail.com Anav1230gmail.com Anit230gmail.com Abilash1230gmail.com Kumar.1230gmail.com Santosh1230gmail.com Amarssh1230gmail.com	455 10 Conto 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India 9535866270 India	Saata Oly Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare Karnataka Bangalare	
	VIEW ALL GET Govinit Manjunath Imismanju Arvini Amar Anis Abilash Rumar Golut Sentosh Amaresh Akul	note USERS II Edua Govind 123Bgmail.com tmisumanju13Bgmail.com tmisumanju13Bgmail.com Aniar123Bgmail.com Aniar123Bgmail.com Abitash123Bgmail.com Solut123Bgmail.com Solut123Bgmail.com Aniarsh123Bgmail.com	Hob No Counto 9535866270 India 9535866270 India	State Oty Karnataka Bungatore Karnataka Bungatore Karnataka Bangatore Karnataka Bangatore Karnataka Bangatore Kartataka Bangatore	Withir Winidows

Fig 4. Result screenshot 3

Ø leverheider x	+			0 ERI
€ → C @ 1270018000***	(model/			÷ 1
Dradictiva	Analysis for Big Ma	et Salas Lisian	Machine Lear	ning Alagrithme
Predictive	Analysis for big Ma	in clates using	Macrime Lear	ining Auguricinitis
Train and Test Data Sets View HA	Compartson Resultata View HSE Compartson	Resultata View RMSE Comparison	Resultation Print Billy Marit Salla Pro	dicted Deta Set Details
Deventual Trained Data Sate View	All Remote Users Lagout			
1				
1				
	Trained and Te	sted Big Mort Sole Predictd Date	a Seta Desulta	
	Model NAME	MAE	ISE RMSI	
	Linear Regression Model Results	1.0381248893843 1197936.	168836446 1094.582695	
00	Hage Regression Model Results Str	-74765014845121197526-	6214687722 1894, 11594	
	X			
	-74.8		PRFNI	2 TINN
	00		INCOR	
		1 1 1 N 1 N		
		61		
		and the set		
				the second s

Fig 5. Result screenshot 4

Fig 6. Result screenshot 5

Fig 7. Result screenshot 6

Fig 8. Result screenshot 7

		-		
				1
VIEW ALL DE	MOTE USERS III			
Contract	E EMAIL	Mah No Countr	y Starta City	
Maniumath	Informaniu/Tillemail.com	4515866270 India	Karnataka Bangalore	
Unkamania	tmismaniu/39omail.com	9535866271 India	Karnataka Bangalore	
Arvind	Acvind123@umail.com	9535866270 India	Karnataka Bangalore	
Amar	Amar123Bomail.com	9535866270 India	Karnataka Bangalore	
Anii	Anit123Bomail.com	9535866270 India	Karnataka Bangalore	
Abitash	Abilash123@amail.com	9535866270 India	Karnataka Bangalore	
Kumar	Kumar 1230kgmail.com	9535866270 India	Karnataka Bangalore	
Galad	Gokul123@gmail.com	9535866270 India	Karnataka Bangalore	
Santosh	Santosh123@gmail.com	9535866270 India	Karnataka Bangalore	
Amaresh	Amaresh1238gmail.com	9535866270 India	Karnataka Bangalore	
Ahul	Akud123@gmail.com	9535866270 India	Karnataka Bangalore	
Province in	Suresh123@gmail.com	9535866270 India	Karnataka Bangalore	
2011 6221		And the second second second second	Construction of the American American	

Fig 9. Result screenshot 8

Fig 10. Result screenshot 9

Fig 11. Result screenshot 10

Fig 12. Result screenshot 11

C (D 127.00 Law	WirAdd DataSen Densiti/		9
Predictiv	e Analysis	for Big Mart Sales Using	Machine Learning Algorithms
IIG MART SALES	PREDICTED DATA	NETS VIEW YOUR PROFILE LOGOUT	
owne Big Mart Sa	la Predicted Data 5	Choose File No Sie dawn	
scal.			
Item_Identifier	Outlet_Identifier	Item_Outlet_Sales	
FDW58	OUTD49	1852	
FDW14	OUT017	1324	
NCNSS	OUTOIO	1798	
FDQ58	OUT017	2590	
FOY38	OUT027	5124	
FOHSE	OUT046	2004	
FOL48	OUTO18	526	
FDC48	OUT027	2758	
FDN33	OUT045	1646	
FDA35	001017	3054	
	DUT017	1944	
FOT44	OUTDAS	1448	
F0T44 F0Q56	A1 10 1 10 10 10 10 10 10 10 10 10 10 10		

Fig 13. Result screenshot 12

Moreover, the implications of the predictive analysis results for Big Mart's operational efficiency and business performance are discussed. The accurate forecasting provided by the predictive model enables Big Mart to make informed decisions regarding inventory management, pricing strategies, and resource allocation. By proactively adjusting inventory levels in response to anticipated demand fluctuations, Big Mart can minimize stockouts, reduce excess inventory holding costs, and optimize shelf space utilization. Additionally, the ability to forecast sales volume with greater precision allows Big Mart to tailor its marketing campaigns and promotional activities to target specific

customer segments and maximize sales opportunities. Overall, the predictive analysis empowers Big Mart with actionable insights that drive strategic decision-making and enhance competitiveness in the retail market. Through ongoing refinement and optimization of the predictive model, Big Mart can continue to leverage machine learning algorithms to stay ahead of market trends and deliver superior value to its customers.

CONCLUSION

In this work, the effectiveness of various algorithms on the data on revenue and review of, best performance-algorithm, here propose a software to using regression approach for predicting the sales centered on sales data from the past the accuracy of linear regression prediction can be enhanced with this method, polynomial regression, Ridge regression, and Xgboost regression can be determined. So, we can conclude ridge and Xgboost regression approaches. In future, prediction with respect to Accuracy, MAE and RMSE than the Linear and polynomial regression approaches. In future, the forecasting sales and building a sales plan can help to avoid unforeseen cash flow and manage production, staff and financing needs more effectively. In future work we can also consider with the ARIMA model which shows the time series graph.

REFERENCES

1. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media.

2. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R. Springer Science & Business Media.

3. Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794).

4. Seber, G. A. F., & Lee, A. J. (2012). Linear Regression Analysis. John Wiley & Sons.

5. Weisberg, S. (2013). Applied Linear Regression. John Wiley & Sons.

6. Draper, N. R., & Smith, H. (2014). Applied Regression Analysis. John Wiley & Sons.

7. Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University.

8. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 29(5), 1189-1232.

9. Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161-168).

10. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

11. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.

12. Yeh, C. C. M. (2002). Modeling of strength of high-performance concrete using artificial neural networks. Cement and Concrete research, 32(9), 1449-1458.

13. Drucker, H., Burges, C. J., Kaufman, L., Smola, A., & Vapnik, V. (1997). Support vector regression machines. Advances in neural information processing systems, 9, 155-161.

14. Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press.

15. Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.