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Abstract—Reversible logic attains the attraction of researchers in the last decade mainly due to low-power dissipation. Designers‘ endeavors are 
thus continuing in creating complete reversible circuits consisting of reversible gates. This paper presents a design methodology for the 
realization of Booth‘s multiplier in reversible mode. Booth‘s multiplier is considered as one of the fastest multipliers in l iterature and we have 
shown an efficient design methodology in reversible paradigm. The proposed architecture is capable of performing both signed and unsigned 
multiplication of two operands without having any feedbacks, whereas existing multipliers in reversible mode consider loop wh ich is strictly 
prohibited in reversible logic design. Theoretical underpinnings, established for the proposed design, show that the proposed circuit is very 
efficient from reversible circuit design point of view. 

Index Terms: Booth’s Multiplier, Garbage Output, Low power Design, Quantum Cost. 

I. INTRODUCTION 

The field of reversible logic is achieving a growing interest 

by its possibility in quantum computing, low-power CMOS, 

nanotechnology, and optical computing. It is now widely 

accepted that the CMOS technology implementing irreversible 

logic will hit a scaling limit beyond 2016, and thus the 

increased power dissipation is a major limiting factor. 

Landauer‘s principle [1] states that, logic computations that 

are not reversible generate heat kTln2 for every bits of 

information that is lost. According to Frank [2], computers 

based on reversible logic operations can reuse a fraction of 

signal energy that theoretically can approach arbitrarily near 

100%. 

An n-input n-output function (gate) is called reversible if 

and only if it maps each input instance to a unique output 

instance. The only possible structure for a reversible network 

is the cascade of reversible gates. In practice, not all of the n! 
possible reversible functions can be realized as a single 

reversible gate. Several reversible gates have been proposed in 

literature so far, where the synthesis of reversible circuits 

differs significantly from synthesis in traditional irreversible 

circuits. Two restrictions are added for reversible networks, 

namely fan-outs and back-feeds. 

The aim of the paper is to design a Booth‘s multiplier in 

reversible mode which is capable of working with both signed 

and unsigned numbers. The reversible multiplier designed in 

[3] works for unsigned numbers only, while the recently 

developed one in [4] is based on booth recoding. On the other 

hand, the proposed design is dedicated to eliminate these 

limitations and prove its supremacy thereby. This design also 

establishes its efficiency by assimilating all the good features 

of reversible circuits that are characterized by number of 

garbage outputs and number of gates. 

Rest of the paper is organized as follows: After illustrating 

the preliminaries of reversible logic gates in Section 2, we 

have presented the input-output vectors of popular reversible 

gates along with their quantum costs. Section 3 concentrates 

on the main logic synthesis of the proposed reversible 

multiplier with the detailed description of each designed 

blocks. The theoretical underpinnings and the evaluation of 

the proposed Booth‘s multiplier are shown in Section 4. We 

conclude in Section 5 discussing the main contribution and the 

future work. 

II. LITERATURE REVIEW 

In this section, basic definitions and ideas related to 

reversible logic are presented. 

a) Definition 1: A Reversible Gate is a k-input, k-output 

(denoted by k×k) circuit that produces a unique output pattern 

[5]–[8] for each possible input pattern. Reversible Gates are 

circuits in which the number of outputs is equal to the number 

of inputs and there is a one to one correspondence between the 

vector of inputs and outputs, i.e., it can generate unique output 

vector from each input vector and vice versa. A reversible 

circuit must incorporate reversible gates in it and the number 

of gates used in a design is always a good complexity measure 

for the circuit. It is always desirable to realize a circuit with 

minimum number of gates. 

Let the input vector be Iv, output vector Ovand they are 

defined as follows, Iv = (I1,I2,...,Ik) and Ov= (O1,O2,...,Ok). For 

each particular k, there exists the relationship Iv ←→ Ov. 

b) Definition 2: Unwanted or unused output of a 

reversible gate (or circuit) is known as Garbage Output. More 

formally, the outputs which are needed only to maintain 

reversibility are called garbage outputs. While performing 

EXOR operation with a Feynman gate (defined in Table I), the 

second output should be called as garbage, as shown in Fig. 1 

with *. 
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 Figure 1. Feynman gate with target and garbage output. 

 

 
c) Definition 3: The delay of a logic circuit is the 

maximum number of gates in a path from any input line to any 

output line. The delay of the circuit in Fig. 1 is obviously 1 as 

it is the only gate in any path from input to output. 

d) Definition 4: The quantum cost (QC) of every 2×2 

gate is the equal (=1) [16], while a 1×1 gate costs nothing 

since it can be always included to arbitrary 2×2 gate that 

precedes or follows it. Thus, in first approximation, every 

permutation of quantum gate will be built from 1×1 and 2×2 

quantum primitives and its cost is calculated as the total sum 

of 2×2 gates that are used in the circuit. 

Now we define some popular reversible gates in Table I 

with their corresponding input-output vectors and quantum 

cost. 

III. PROPOSED REVERSIBLE BOOTH‘S MULTIPLIER 

In this section, in a gradual approach we show the design of 

reversible array multiplier using Booth‘s algorithm. 

Implementing the Booth‘s method by a combinatorial array 

first requires a reversible multi-function cell capable of 

addition, subtraction and no operation (or skip), which we call 

as B cell according to the convention. The various function of 

B cell is selected by a couple of control lines named as H and 

D. The control signal is generated by another control cell 

which is named as C cell. 

A. Design of C Cell 

The C cell is the basic unit of control circuitry of the original 

array multiplier. The input of this cell (XiXi−1) implies two 

adjacent bits of the multiplier operand. The cell generates the 

required control signal named as H and D [17] according to the 

original multiplier algorithm. The calculation of H and D are 

determined by the following equations: 

 

 H = Xi ⊕ Xi−1 and D = XiXi−1 (1) 

The reversible design of C cell (Fig. 2(a)) consists of a 3×3 

TS-3 gate, a Fredkin gate. The third input of the Fredkin gate 

is set to zero, which act as a control input for the gate and 

generates the product (after complementing the first input) of 

other two inputs (denoted as ‗D‘). The third output of the TS-3 

Gate is the control signal H. The block diagram of Fig. 2(b) 

shows the input and output line of C cell. The direct quantum 

realization of the C cell tenders a quantum cost of 7 as the 

quantum cost of 3×3 TS-3 Gate and Fredkin Gate is 2 and 5, 

respectively. However, it will produce a quantum cost of 4 if 

we design according to the one shown in Fig. 2(c). 

 

(a) 

 

(b) 

 

(c) 

Figure 2. (a) Gates used in ‘C‘ Cell (b) ‘C‘ cell as a block diagram with input 

and output (c) Quantum circuit for ‘C‘ cell, where QC is 4 

B. Design of B Cell 

The B cell is a multi-function cell, where various functions 

include addition, subtraction, no-operation. These functions 

are defined by the following logic equations: 

Z = a ⊕ bH⊕ cH= a ⊕ (b ⊕ c)H 

(2) 

Cout = (a ⊕ D)(b ⊕ c) ⊕ bc 

Here Z is the result of addition or subtraction and Cout indicates 

the carry output. The cell operates on three operands 

a,b,cwhere a is the propagated result from a previous B cell, b 
is a multiplicand bit and c is the carry-in bit. H and D 

are the control signal generated by the corresponding C cell. 

When HD=10, these equations reduce to the usual full adder 

equations: 

Sum = a ⊕ b ⊕ c 

(3) 

Cout = ab ⊕ c(a ⊕ b) 
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On the contrary, when HD=11, the equations are converted to 

the corresponding full-subtracter equations: 

  (4) 

When H=0, Z becomes a and the carry lines play no role in the 

final result. Table II summarizes the function of this cell. 
Table II 

VALUES OF H AN D AND THEIR 

FUNCTIONS. CORRESPONDING 

− 

The B cell is designed (shown in Fig. 3) with the 

wellknown TS-3 Gate, MTSG, and Peres Gate. The MTSG 

Gate is a 4×4 Reversible gate which itself provides a full 

adder realization when the control bit is zero. Although, the 

MTSG [15] is a modified version of TSG [3], due to complex 

inputoutput relationship of TSG, the gate is very much 

inefficient in terms of quantum realization (e.g., 

QC(TSG)=13), while the QC of MTSG is less than half of the 

QC of TSG (e.g., QC(MTSG)=6). Hence, instead of using 

TSG gate, we use the modified TSG gate in our design 

methodology. The MTSG generates very simple output 

conserving the reversibility property. In addition, providing 0 

in the D input, we can easily realize the Full-adder from 

MTSG. In Fig. 3(a), the output 

 

(a) 

 

(b) 

Figure 3. (a) Circuit diagram of B cell (G* indicates the garbage output) 
(b) Block diagram of B cell 

of TS-3 gate is fed as input to the MTSG gate and also to the 

Peres gate. The required output Z is produced from the Peres 

gate and the carry out bit is produced from the MTSG gate. 

The control signal HD and the same multiplicand bit b used in 

this cell is regenerated as a byproduct to activate the next cell. 

Since fan out is prohibited in reversible circuit, this additional 

function is taken into concern of each B cell. 

The quantum cost of the used reversible gates (TS-3 Gate, 

MTSG Gate and Peres Gate) is 2, 6 and 4, respectively. Hence 

the quantum cost of the circuit of Fig. 3(a) is QC(TS-3) + 

QC(MTSG)+ QC(PG) = 2+6+4 =12, here QC(X) indicates the 

quantum cost of the gate ‗X‘. To build up the generalized 

equation for the n bit version, the basic cells work as a 

building block. Thus, we summarize the number of gates, 

garbage outputs and the quantum cost of these cells in Table 

III. 

Table III 
COST FACTOR ANALYSIS OF THE PROPOSED CELLS. ∗ALTHOUGH 

QC(TS-3)+ QC(FRG) = 7, ACCORDING TO THE DESIGN OF FIG. 2, THE QC(C 

CELL) IS 4 

Cell Gate (count) Garbage cost Quantum Cost 

B cell 
TS-3 (1) 

MTSG (1) 
Peres (1) 

2 12 

C cell TS-3 (1) 
Fredkin(1) 2 4∗ 

C. Construction of n×nReversible Twos Complement Array 

Multiplier 

In this section, an n × n reversible Booth‘s multiplier is 

realized by the proposed B cell and C cell. The architecture of 

the n×narray multiplier, shown in Fig. 4 takes the form of a 

trapezium. All the C cells at the right together comprise the 

control circuitry. If X = Xn,Xn−1,Xn−2 ...X0 and Y = Yn,Yn−1,Yn−2 

...Y0 denote the multiplier and multiplicand, respectively then 

the multiplier bits are fed to the C cells, and a implicit zero is 

added with the multiplier bits. There are total n rows and each 

row contains a C cell, hence the total n number of C cells are 

required in the design. The top most row of this two 

dimensional architecture contains (2n-1) B cells. The second 

row consists of (2n-2) B cells. Continuing in this fashion the 

bottom line only contains n number of B cell. All the 

multiplicand bits are fed to the upper layer B cells (through the 

input line indicated by ‗b‘ in Fig. 3 ). The ‗b‘ inputs of the left 

side of (n-1) B cells are set to the sign extended Y for addition 

and subtraction. The a inputs (indicates the result of sum or 

subtract from the corresponding upper layer cell) of the upper 

layer B cells and the carry inputs of the rightmost B cells are 

set to zero. 

 

 

H D Function 
0 X Z=a (no operation) 
1 0 CoutZ= a + b + c (add) 
1 1 CoutZ= a bc(subtract) 
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D. Multiplication Example by a 4×4 Reversible Booth’s Mul- 

tiplier 

This section illustrates an example of multiplication by the 

proposed design. It shows the value of each input and output 

line for every single cell for the particular example. Assume 

that the two operands are −3 and 5, and so the result should be 

−15. Obviously the negative input that is the multiplicand will 

be in twos complement form. Hence, multiplicand Y =1101 (in 

twos complement form), multiplier X= 0101 (5), an implicit 0 

is added, which becomes, X=01010 and they are fed into the C 
cells in the following manner. 

01: HD=10 implies add. 

10: HD=01 implies subtract. 01: 

HD=10 implies add. 

10: HD=01 implies subtract. 

Thus, the 4×4 circuit (shown in Fig. 5) generates 1110001, 

which is -15 in two‘s complement. 

 

 Figure 4. n × n reversible Booth‘s multiplier. 

 

 Figure 5. 4×4 reversible Booth‘s multiplier. 
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IV. EVALUATION OF THE PROPOSED DESIGN 

In this section necessary theorems are given to evaluate the 

proposed design. All the theorems provide lower bounds for 

number of gates, garbage outputs, circuit delay and quantum 

cost. 

Theorem 1: Let NGT be the number of gates required to 

realize an n×nReversible Multiplier where n is the number of 

bits, then 

  (5) 

Proof: An n×nReversible Multiplier requires 3/2 n(n-

1)Bcells and each B cell contains 3 reversible gates. Moreover, 

n LB cells (B cells in left most side) are required along with the 

B cell each of which contains 2 reversible gates. To perform 

the control operation n C cells are required, where each of 

them consists of 2 gates. Furthermore, (n/2+1) FGs are 

required to perform the copy operation. As NGT is the total 

number of gates to realize the n × n Multiplier, according to 

the above definition: 

  (6) 

Similarly, we propose the following theorems that can be 

proved in the similar way. 

Theorem 2: Let n be the number of bits in the Reversible 

Multiplier and NGB denotes the number of garbage outputs, 

then 

NGB ≥ n(4n + 1) − 1 

Proof: Each B cell generates 2 garbage output and an 

n×nReversible Multiplier requires 3/2 n(n−1) B cells. The LB 
cell, comprises the last column of the reversible multiplier do 

not need to generate the carry equation as well as to propagate 

the control signal. Realization of a LB cell requires no less than 

3 garbage output. Further, each C cell generates 2 garbage 

output and Total 2n number of garbage is added for n C cells. 

Moreover, (n-1) B cells of the last row generates extra (n-1) 

garbage that is due to the propagation of prime input b. As NGB 

is considered as the minimum number of gates to realize the 

reversible multiplier, hence 

  (7) 

Theorem 3: Let are the delay of B, LB and 

C cell respectively in the n×nreversible multiplier. Let, DF 

be the delay of a FG and DRM denotes the total delay of the 

reversible multiplier, then 

 

Proof: The longest path from input to output of the n × n 

Reversible Multiplier contains 2(n-1) B cells which incurs a 

delay of 2( . In addition, the path also contains n LB 

cell, one C cell and a FG along with the B cell. Hence, 

considering DRM as the total delay, 

  (8) 

Theorem 4: Let QC(RM) be the total quantum cost to 

realize an n × n reversible multiplier where n is the number of 

bits, then 

 QC(RM)  (9) 

Proof: Each B cell tenders a quantum cost of 12 

(QC(TS3)+QC(MTSG) + QC(PG)= 2+6+4). An n × n 

reversible multiplier requires n/2(3n − 5) such B cells. The B 
cell of the column before the last one uses FG instead of TS-3 

since it does not need to feed control signal D to the last level 

of LB cell. Thus, each B cell of this specific column incurs a 

quantum cost of 11. Moreover the quantum cost of each 

individual LB cell is 5 (QC(FG)+ QC(PG)= 1+4). Beside this, 

the n number of C cells contribute 7n to the quantum cost and 

the remaining (n/2+1) FGs are responsible for a QC of 

(n/2+1). As QC(RM) is the total quantum cost to realize the n 
× n multiplier, according to the aforementioned definition: 

QC(RM)  

(10)  

 

We also evaluate the 4×4 version of the proposed Booth‘s 

multiplier with the two existing designs. To compute the 

necessary parameters for a 4×4 array multiplier the instance of 

the generalized equations are taken and the calculation is 

carried out by putting the value of n = 4. Existing method of 

Bhardaj and Deshpande [4] do not provide any generalized 
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equation to calculate the delay of a circuit, while the other 

method in [3] (shown in Fig. 6 for n=4) uses fan out which is 

strongly prohibited in reversible logic design. On the other 

hand, the proposed circuit is designed avoiding the fan outs. 

The design of [4] also failed to preserve the constraint of 

reversible logic design, i.e., loop in circuit. The proposed 

reversible multiplier works without using feedback and also 

can operate on both positive and negative numbers whereas 

the existing reversible multiplier work as serial multiplier. 

This achievement is obtained in expense of delay and 

preserving reversibility. 

V. CONCLUSION 

This paper presents a Radix-2 Booth‘s Multiplier 

implementation using Reversible Gates. A full design of n × n 
reversible array multiplier is proposed which is based on the 

conventional irreversible design. The evaluation of the 

proposed circuit is performed from all the aspects of reversible 

logic. Additionally, the quantum cost of the proposed cell 

(different sub-sections of the entire circuit) as well as the 

whole design has been analyzed. The proposed reversible 

multiplier architecture outperforms the existing design in 

terms of design methodology by preserving the constraints of 

reversible logic synthesis. The key achievement of the design 

is, it is capable of working with both signed and unsigned 

numbers, which is not present in the existing circuits 

considered in this paper. Current research is investigating the 

extension of the proposed logic for Radix-4 approach. 
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