

Volume 12, Issue 10, Oct 2022 ISSN 2457 – 0362 Page 174

A CRITICAL STUDY ON SOFTWARE SECURITY REQUIREMENT

ENGINEERING FOR RISK AND COMPLIANCE MANAGEMENT

CANDIDATE - Biswanath Mishra

DESIGNATION- RESEARCH SCHOLAR SUNRISE UNIVERSITY ALWAR

Guide name - Dr.Prateek Mishra

DESIGNATION- Associate professor

ABSTRACT

Software security requirement engineering (SSRE) is a crucial process in contemporary software

development, focusing on identifying, analyzing, and specifying security requirements to address

potential risks and ensure compliance with relevant regulations and standards. This research

paper investigates the role of SSRE in risk and compliance management within the software

development life cycle. The paper explores various methodologies and best practices employed by

organizations to integrate security considerations early in the development process.

Keywords: - Software, Security, Management, Application, Cycle.

I. INTRODUCTION

OVERVIEW OF SOFTWARE

SECURITY REQUIREMENTS

Using categorical and morphisms theory, this

study aims to provide a software-based

security requirement engineering paradigm.

Multiple perspectives on parallel processing

and the creation of rewrite-based,

knowledge-centered models are the primary

focuses of previous security requirement

engineering models, but these earlier models

lack the incorporation of multiple functional

mappings between the security objects

necessary to choose the optimal approach.

The security models do not account for the

essential security functions that must be

implemented over a wide range of settings

and execution depths. To better organize the

many categories of security requirement

functional objects, the suggested requirement

engineering model makes use of the formal

theory of category of objects and the

morphisms between them, as well as n

categories and multiple morphisms.

This security need category is handled by

treating objects, morphisms, and uncertain

events in each given subsystem as algebraic

data types on demand. Implicitly employed in

the development of category and morphism is

the gathering of security requirement items

using classification and clustering

algorithms. In order to give a security

assurance functors with minimal risk on the

requirements for the next design state, we

first map the risk and compliance in the form

of both direct and indirect categories. To

ensure minimal security risks via effective

compliance management strategies, a 'n'

category and 'n' morphic model for software

security requirement model are provided.

Volume 12, Issue 10, Oct 2022 ISSN 2457 – 0362 Page 175

Risks are recognized with many morphisms

of non-compliances, and the functions

themselves are morphisms between security

objects of different sorts in various attack and

vulnerability categories. By combining risk

analysis with semiformal specification

techniques, as in the CORAS approach, a

workable framework may be developed for

model-based security risk assessment.

II. SOFTWARE SECURITY

REQUIREMENT STANDARDS

FOR DISTRIBUTED

APPLICATIONS

Open stack, Internet, cluster, physical

system, cloud, collaborative, intelligent, and

in grid infrastructures are all examples of

software-as-a-service environments from

which information on software security and

risk requirements must be gleaned. A device-

centric platform, a real-time platform, a

secured platform, a broker platform, an

operating system-centric platform, a real-

time OS-centric platform, a data-centric

platform, and a network-centric platform are

all part of the platform-as-a-service offering.

Health care apps, clinical and forensics

services, political and military services, legal

regulation investigation and compliance

service, social networking apps, toy and

robotics services, business applications, and

cyber services are all part of the infra

structure as a service, as shown in Figure 1.

.

Figure 1 Software Security Requirement

in Multi Levels of Execution

III. DISTRIBUTED SOFTWARE

SECURITY -CASE STUDY:

CONNECTED CARS

The white rear of a tractor trailer stood out

starkly against the night sky, but neither the

auto pilot nor the driver saw it in time to use

the brakes. The accident raises questions

about the reliability of autonomous cars'

ability to make split-second, potentially life-

or-death judgments while driving. When

compared to traditional cars and their fallible

drivers, the operational hazards associated

with automated vehicles and automated

roadways are expected to be substantially

greater. To rescue the driver or the crowd

That is the moral conundrum posed by

autonomous automobiles. Accidents of this

sort might occur, for example, if sensors are

placed so that they cannot detect children

who are playing alone. However, the danger

of artificial intelligence is too complicated to

make sense when evaluating the risk of

automation.

Security Requirements Analysis Based on

Scenarios Elicitation

Volume 12, Issue 10, Oct 2022 ISSN 2457 – 0362 Page 176

 Constant and constant notification is

required.

 Security decisions and precautions

must be taken swiftly.

 Brake system automation must be

implemented based on automated

signal specifications.

 The sensors need to be set up in a way

that allows the items or crowd to be

detected.

 Risk and failure are mitigated by the

iterative process of dynamic demand

elicitation.

 Locating the Security Players

 Who activates, requests, or retrieves

the cyber physical system and when.

 Finding the safe ones

 What are the actor's desired system

capabilities?

 Does the system have a memory?

Who will create this data, who will

use it, who will edit it, and who will

destroy it?

 Should an actor be informed when

there is a change in the system's

internal state?

 Is the system aware of any external

events? Who communicates such

information to the system?

 Localization of the Security User

Environment

 The system's limits must be specified

precisely.

 Safety Measures Flowchart

 A cyber case diagram is a graphical

depiction of the interdependencies

between actors and use cases, used to

record the desired operation of a

system.

IV. CONCLUSION

In conclusion, software security requirement

engineering plays a critical role in risk and

compliance management within the realm of

software development. By incorporating

security considerations into the early stages

of the software development life cycle,

organizations can proactively address

potential vulnerabilities and ensure

compliance with relevant regulations and

standards.

The process of software security requirement

engineering involves identifying and

analyzing potential security risks, defining

security objectives, and establishing security

requirements that guide the design and

implementation of secure software. It

necessitates collaboration between various

stakeholders, including software developers,

security experts, risk analysts, and

compliance officers.

By implementing a structured and well-

defined software security requirement

engineering process, organizations can

achieve several key benefits:

 Risk Mitigation: Early identification

and analysis of security risks enable

the implementation of appropriate

countermeasures, reducing the

likelihood of security breaches and

data compromises.

 Compliance Adherence: By aligning

security requirements with relevant

industry standards and regulations,

organizations can ensure compliance

with legal and regulatory

frameworks, avoiding potential

penalties and reputational damage.

 Cost Savings: Detecting and

addressing security issues during the

Volume 12, Issue 10, Oct 2022 ISSN 2457 – 0362 Page 177

requirement engineering phase is

more cost-effective than attempting

to fix them after deployment or

during later stages of development.

 Enhanced Trust and Reputation:

Demonstrating a commitment to

security and compliance enhances

trust among customers, partners, and

stakeholders, leading to improved

reputation and business opportunities.

 Resilient Software: Security-focused

requirement engineering results in

more robust and resilient software

that can withstand cyber-attacks and

evolving threats.

 Long-term Sustainability: Adopting a

proactive approach to software

security fosters a culture of security

awareness and ensures long-term

sustainability of software

applications.

However, it is crucial to acknowledge that

software security is an ongoing process.

Threat landscapes constantly evolve, and

new vulnerabilities emerge over time.

Therefore, it is essential to continuously

monitor and update security requirements

throughout the software's life cycle.

Moreover, software security requirement

engineering should be integrated into an

organization's overall risk management

strategy. It should complement other security

practices, such as vulnerability assessments,

penetration testing, and security training for

employees.

In conclusion, software security requirement

engineering is a vital practice that empowers

organizations to build secure, compliant, and

reliable software applications while

minimizing risks and protecting sensitive

data. By fostering a proactive security culture

and adopting a holistic approach to software

security, organizations can stay ahead of

potential threats and maintain a strong

position in the face of ever-changing

compliance requirements and security

challenges.

REFERENCES

1. Canavese, Daniele & , Leonardo &

Basile, Cataldo & Coppens, Bart &

De Sutter, Bjorn. (2020). Software

Protection as a Risk Analysis

Process.

2. Islam, Shareeful & Dong, Wei.

(2008). Human factors in software

security risk management.

Proceedings - International

Conference on Software

Engineering.

10.1145/1373307.1373312.

3. Malik, Vinita & Singh, Sukhdip.

(2019). Security risk management in

IoT environment. Journal of Discrete

Mathematical Sciences and

Cryptography. 22. 697-709.

10.1080/09720529.2019.1642628.

4. Asif, Muhammad & Jamil, Ahmad &

Hannan, Abdul. (2014). Software

Risk Factors: A Survey and Software

Risk Mitigation Intelligent Decision

Network using Rule Based

Technique. 2209.

5. Kure, Halima & Islam, Shareeful &

Razzaque, Mohammad Abdur.

(2018). An Integrated Cyber Security

Risk Management Approach for a

Cyber-Physical System. Applied

Sciences. 8. 898.

10.3390/app8060898.

6. Jahankhani, Hamid & Nkhoma,

Volume 12, Issue 10, Oct 2022 ISSN 2457 – 0362 Page 178

Mathews & Mouratidis, Haris.

(2010). Security risk management

strategy.

10.1142/9789812837042_0013.

7. Haz, Lidice & Morán, Manuel &

Acaro, Ximena & Guzman, Carlos &

Espin, Luis. (2019). Implementation

of IT Security and Risk Management

Process for an Academic Platform.

10.1007/978-3-030-02351-5_43.

8. Magnusson, Christer & Chou, Sung-

Chun. (2010). Risk and Compliance

Management Framework for

Outsourced Global Software

Development. 228-233.

10.1109/ICGSE.2010.33.

