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Abstract: 

Detecting petrol emissions accurately is important for both 

human and environmental health. Hyperspectral image 

analysis, especially in the long-wave infrared (LWIR) band, 

is becoming a more and more effective way to find gas from 

a distance. Most of the time, the approaches that are already 

out there just look at spectrum unmixing and classification 

using 3D Convolutional Neural Networks (3D-CNN) and 

Autoencoders. They don't always use sophisticated feature 

augmentation techniques that can make detection more 

accurate. We suggest an Ensemble Model that combines 

CNN, Bi-Directional, and Gated Recurrent Units (GRU) to 

get the most out of feature extraction and make predictions 

more accurate. Our method uses pre-extracted features from 

methane monitoring datasets instead of hyperspectral 

pictures, which is different from the baseline model that 

works directly with radiance data. The suggested ensemble 

approach works well to enhance feature learning by 

combining spatial, temporal, and sequential dependencies. 

The experimental findings show that the ensemble model is 

better than standard 3D-CNN and autoencoder-based 

approaches at finding Methane and Sulphur Dioxide gases 

because it is more sensitive and accurate. This work shows 

how important it is to use ensemble learning methods to 

improve gas detection, even when you don't have raw 

hyperspectral data. 

INDEXTERMS: Gas Detection, Hyperspectral Imaging, 

3D-CNN, Autoencoder, Ensemble Model, CNN, Bi-

Directional GRU, Feature Optimization, Methane 

Monitoring, Sulphur Dioxide Detection, Deep Learning, 

Radiance Unmixing, Feature Extraction, Remote Sensing, 

Spectral Angle Mapper 

1. INTRODUCTION 

Finding fuel emissions is a crucial way to keep an eye on 

pollution levels and make sure everyone is safe.  There has 

been a lot of interest in hyperspectral photography's ability 

to detect and analyse gases from a distance based on their 

spectral signatures, notably in the longwave infrared 

(LWIR) spectrum.  Two examples of spectral unmixing 

algorithms utilised in traditional approaches are the 

Adaptive Cosine Estimator (ACE) and the Spectral Angle 

Mapper (SAM).  Using luminance-temperature and radiance 

data, these algorithms distinguish petrol emissions.  

However, these methods aren't very accurate or reliable in 

the actual world since they usually don't work well with 

intricate mixtures of gases and background noise. 

 Auto-encoders and 3D CNN are two examples of deep 

learning-based methods that have been looked into recently 

as possible ways to fix these problems. These networks can 

extract and unmix features quite well.  These approaches 

improve gas identification by looking for spatial and 

spectral patterns in hyperspectral images.  These new 

methods look promising, but they aren't the best for 

performance because they don't employ recent feature 

augmentation techniques.  Most models also need raw 

hyperspectral pictures, but these aren't always easy to get, 

which makes them less useful. 

 

 We provide an Ensemble Model that combines CNN, Bi-

Directional, and Gated Recurrent Units (GRU) to make the 

gas detection framework better at feature extraction and 

prediction.  This model builds on the current framework 

based on 3D-CNN and Autoencoder.  We employ pre-

extracted features from the Methane Monitoring website 

instead of merely relying on hyperspectral pictures. This 

makes the technique more useful and adaptable.  The 

proposed ensemble architecture employs convolutional 
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layers to learn spatial information, bi-directional processing 

to grasp sequential relationships, and GRUs to comprehend 

temporal patterns. This makes the detection mechanism 

more complete and accurate. 

 When compared to the baseline 3D-CNN and Autoencoder 

methods, tests reveal that the ensemble model greatly 

improves performance metrics like sensitivity and accuracy.  

This research shows a way to find gases like methane and 

sulphur dioxide that can be used in a lot of different 

circumstances, even when raw hyperspectral photos aren't 

available.  It also talks about how ensemble learning 

methods may be used to make gas detection systems better. 

2. LITERATURE SURVEY 

i) Imaging Spectroscopy and the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) 

https://www.sciencedirect.com/science/article/abs/pi

i/S0034425798000649       

Imaging spectroscopy is a new and exciting way to do Earth 

remote sensing that is increasingly becoming popular. The 

Airborne Visible/Infrared Image Spectrometer mostly 

followed the sun's reflected spectra at 10-nanometer 

intervals from 400 to 2500 nm. AVIRIS has excellent 

calibration accuracy and a high signal-to-noise ratio. 

AVIRIS has come a long way in the last few years, both in 

terms of research and real-world use. The AVIRIS system's 

first design and revisions contain documentation for the data 

system, sensor, calibration, and flight operations. This 

update on AVIRIS' features puts into context scientific 

studies and applications that use data from the last few 

years. Some recent scientific studies and uses include: 

spectral algorithms, human infrastructure, atmospheric 

correction, biomass burning, environmental hazards, 

geology and soils, the hydrology of snow and ice, inland and 

coastal waters, the atmosphere, and satellite simulation and 

calibration. 

ii)  Hyperspectral Push-Broom Microscope Development 

and Characterization 

https://www.researchgate.net/publication/33543575

2_Hyperspectral_Push-

Broom_Microscope_Development_and_Characterizati

on       

A lot of businesses are starting to employ hyperspectral 

imaging (HSI) to look at samples at the microscopic level.  

Push-broom hyperspectral (HS) cameras are the best HSI 

technology because they have better spectral resolution and 

can use a wider range of wavelengths.  But to collect HS 

data, microscopes with push-broom cameras need to scan 

the specimen very carefully in space.  In this post, we talk 

about how to set up a push-broom HS microscope so that 

you may take the greatest pictures possible.  We start with a 

new mechanical system that is produced in 3D and 

leverages the linear motion of the microscope stage to scan 

space.  Next, the consequences of optimising dynamic 

range, concentrating, aligning, and figuring out speed on 

image quality are explained in depth.  We end with a 

number of high-resolution pictures acquired by push-broom 

cameras showing the most prevalent flaws, as well as 

pictures obtained from real microscopic samples. 

iii) Enhanced Gas Detection in Hyperspectral Images  

With 3 CNN and Autoencoder Models 

https://ijcrt.org/papers/IJCRT2405240.pdf    

Monitoring petrol emissions is vital for the health of people 

and the environment, and this new effort is doing something 

about it.  Researchers are looking for better and safer ways 

to find things by using hyperspectral image analysis because 

standard approaches have their limits.  This study shows 

how to use deep learning to find hyperspectral gases in the 

longwave infrared spectrum by combining unmixing and 

categorisation.  We use a 3-D convolutional neural network 

and an autoencoder-based network to convert radiance data 

into luminance-temperature data. This makes the 

performance better than older methods.  An Ensemble 

model that adds to input information to improve the 

accuracy of predictions is another new idea.  This model 

https://www.sciencedirect.com/science/article/abs/pii/S0034425798000649
https://www.sciencedirect.com/science/article/abs/pii/S0034425798000649
https://www.researchgate.net/publication/335435752_Hyperspectral_Push-Broom_Microscope_Development_and_Characterization
https://www.researchgate.net/publication/335435752_Hyperspectral_Push-Broom_Microscope_Development_and_Characterization
https://www.researchgate.net/publication/335435752_Hyperspectral_Push-Broom_Microscope_Development_and_Characterization
https://www.researchgate.net/publication/335435752_Hyperspectral_Push-Broom_Microscope_Development_and_Characterization
https://ijcrt.org/papers/IJCRT2405240.pdf
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uses a mix of CNN, Bi-directional, and GRU algorithms.  

This unique project shows how new methods may help 

solve problems with the environment. 

iv) Algorithms for chemical detection, identification and 

quantification for thermal hyperspectral imagers 

https://www.researchgate.net/publication/25296569

0_Algorithms_for_chemical_detection_identification_

and_quantification_for_thermal_hyperspectral_image

rs      

In several disciplines, it is very important to be able to find, 

identify, and measure gases from a distance.  These uses 

need sensors that are tiny, tough, and sensitive, with 

minimal false alarms and the capacity to work in real time.  

Thermal infrared spectrometers and imagers can be used as 

chemical sensors.  The creation of large-format infrared 

imaging arrays that can work at high speeds has made it 

possible to make chemical sensors that work very well in 

terms of space, time, and spectrum.  Data from spatial and 

spectral analysis reveal that passive chemical detection, 

identification, and quantification might be much improved.  

This study goes into depth on how to use thermal infrared 

hyperspectral imaging to find, identify, and measure things.  

These algorithms use the field-based Telops FIRST image 

spectrometer to look at datacubes that provide information 

on petrol emissions. 

v) Hyperspectral gas and polarization sensing in the 

LWIR: Recent results with MoDDIFS 

https://www.researchgate.net/publication/32082155

8_Hyperspectral_gas_and_polarization_sensing_in_th

e_LWIR_Recent_results_with_MoDDIFS      

Imaging Fourier-transform infrared (FTIR) spectroscopy 

may passively find and identify vapour emissions and 

surface pollutants. FTIR imaging lets military and security 

organisations keep an eye on illegal factories from a 

distance. DRDC Valcartier is making and testing the 

MoDDIFS imaging Fourier transform infrared sensor for 

this distant sensing use. The suggested approach uses 

hyperspectral imaging's high spatial resolution and 

differential detection's ability to get rid of clutter. You can 

set up a system for remote gas detection and surface 

pollution polarisation sensing using the MoDDIFS sensor. 

This study looks at the most current results of the MoDDIFS 

passive standoff gas and liquid contamination detection. Use 

hyperspectral measurements of difluoroethane, diethyl ether, 

and SF96 gases and liquids to create, test, and prove GLRT-

type detection methods. GLRT detection characteristics are 

used to talk about detection outcomes. 

3. METHODLOGY 

a) Proposed work: 

The suggested system adds an Ensemble Model that 

improves the accuracy of gas detection by using 

Convolutional Neural Networks (CNN), Bi-Directional 

Networks, and Gated Recurrent Units (GRU) to extract 

features and make predictions.  The baseline method just 

uses 3D-CNN and Autoencoders for unmixing and 

classification. The ensemble model, on the other hand, 

optimises input features via several levels of processing to 

effectively capture spatial, sequential, and temporal patterns. 

 In this system, pre-extracted characteristics from the 

Methane Monitoring website are used as input instead of 

raw hyperspectral photos. This makes it useful in situations 

when image data is not accessible.  First, the CNN module 

looks into the spatial properties of the input data to find 

local patterns and high-level abstractions.  Next, the Bi-

Directional Network improves the feature representation by 

capturing dependencies from both directions, which makes 

it easier to find complicated patterns.  Lastly, the GRU 

module takes care of sequential dependencies and temporal 

variations, which lets the system mimic changes in gas 

emission levels that happen over time. 

b) System Architecture: 

The suggested system's architecture is meant to improve the 

accuracy of gas detection by using an ensemble framework 

that combines many machine learning methods.  It has three 

main parts: Feature Input Processing, Ensemble Model 

Processing, and Classification Output. These parts work 

https://www.researchgate.net/publication/252965690_Algorithms_for_chemical_detection_identification_and_quantification_for_thermal_hyperspectral_imagers
https://www.researchgate.net/publication/252965690_Algorithms_for_chemical_detection_identification_and_quantification_for_thermal_hyperspectral_imagers
https://www.researchgate.net/publication/252965690_Algorithms_for_chemical_detection_identification_and_quantification_for_thermal_hyperspectral_imagers
https://www.researchgate.net/publication/252965690_Algorithms_for_chemical_detection_identification_and_quantification_for_thermal_hyperspectral_imagers
https://www.researchgate.net/publication/320821558_Hyperspectral_gas_and_polarization_sensing_in_the_LWIR_Recent_results_with_MoDDIFS
https://www.researchgate.net/publication/320821558_Hyperspectral_gas_and_polarization_sensing_in_the_LWIR_Recent_results_with_MoDDIFS
https://www.researchgate.net/publication/320821558_Hyperspectral_gas_and_polarization_sensing_in_the_LWIR_Recent_results_with_MoDDIFS
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together to increase detection performance and optimise 

feature extraction. 

 During the Feature Input Processing stage, the original 

hyperspectral pictures are substituted with features that have 

already been collected from the Methane Monitoring 

website.  These features show LWIR spectra of gases of 

interest, such methane and sulphur dioxide.  Deep learning 

modules work better when the input data has been cleaned 

up by getting rid of noise and making the values the same. 

 The Ensemble Model Processing step is the most important 

part of the architecture.  It starts with a Convolutional 

Neural Network (CNN), which takes the input data and 

finds spatial characteristics and patterns in it, creating high-

level feature maps.  Then, these characteristics go via a Bi-

Directional Network, which looks at both forward and 

backward dependencies to improve the data representation.  

This stage is very important for modelling complicated 

interactions between characteristics so that the system can 

deal with changes in emission patterns.  A Gated Recurrent 

Unit (GRU) is used to further improve the processed data. It 

captures sequential dependencies and temporal fluctuations, 

making sure that patterns may be detected over time. 

 The penultimate stage in the Classification Output process 

is to use fully connected layers to classify the features of the 

ensemble model.  Layers use the best attributes to find and 

identify data samples that contain target gases.  The results 

suggest that the levels of methane and sulphur dioxide are 

just correct.. 

 

Fig 1 Proposed Architecture 

c) Modules: 

i) Data Collection and Preprocessing: In this phase, 

hyperspectral image data or extracted features related to gas 

emissions are gathered from reliable sources such as the 

Methane Monitoring website. The collected data undergo 

normalization and scaling to ensure consistency across all 

inputs. The dataset is then divided into training, validation, 

and test sets. To improve model generalization, data 

augmentation techniques are applied to simulate diverse 

environmental conditions. 

Dataset link:  

https://studio.edgeimpulse.com/public/158034/latest  

  

ii) Feature Extraction: This module focuses on 

extracting relevant features such as radiance, luminance, and 

temperature from hyperspectral imaging data. The Spectral 

Angle Mapper (SAM) is employed to measure the spectral 

similarity between pixels and known gas spectra. The SAM 

results are then mapped to specific gases using the NIST 

spectral database. To reduce the complexity of high-

dimensional data, Principal Component Analysis (PCA) is 

applied to retain the most informative features for model 

training. 

iii) Ensemble Model Development: In this step, a 

robust ensemble framework is built by integrating three 

neural network models: Convolutional Neural Network 

(CNN), Bi-directional Long Short-Term Memory (Bi-

LSTM), and Gated Recurrent Unit (GRU). CNN captures 

spatial features, Bi-LSTM extracts temporal dependencies in 

both directions, and GRU focuses on sequential learning and 

reducing noise. The outputs of these networks are then 

combined using ensemble learning techniques to enhance 

overall prediction accuracy and robustness. 

iv) Autoencoder-Based Unmixing: An autoencoder 

network is designed to perform unsupervised feature 

learning by encoding input data into latent representations 

and reconstructing it. The encoder identifies abstract 

https://studio.edgeimpulse.com/public/158034/latest
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patterns corresponding to gas emission behavior, while the 

decoder attempts to reconstruct the original inputs. This 

module helps in identifying anomalies and hidden patterns 

within the data. Optimization techniques are used to 

improve reconstruction quality and support better gas 

detection. 

v) Classification Network: The classification network 

consists of a fully connected three-layer neural network used 

to detect specific gases. It takes as input the abundance 

values and endmember spectra derived from previous 

modules. Trained with labeled data, the network classifies 

the input into categories such as methane or sulphur dioxide. 

Metrics like accuracy, precision, and recall are used to 

evaluate the classification performance and improve model 

reliability. 

vi) Model Evaluation and Testing: This module ensures 

the proposed system’s effectiveness by testing it on 

independent datasets. The performance is compared with 

traditional techniques like SAM and ACE. Ablation studies 

are conducted to understand the impact of each module 

individually. Evaluation metrics such as confusion matrices 

and F1-scores are used to measure classification 

performance and identify any misclassifications or 

limitations. 

vii) Deployment and Visualization: The final module 

involves deploying the trained model in a real-world 

environment. A user-friendly interface is developed for real-

time gas detection and visualization. Geographic mapping 

tools are integrated to visually represent spatial distribution 

of emissions. The deployed system generates automated 

reports for monitoring purposes and ensures compliance 

with environmental safety regulations. 

d) Algorithms: 

a) Convolutional Neural Network (CNN): 

The CNN deep learning method works with images and 

other sorts of grid-like data.  It learns about spatial 

hierarchies and pulls out features from incoming data using 

convolution layers.  Filters, which are also called kernels, 

are used to make feature maps from photographs that are 

supplied into the program.  These maps display the most 

critical things, such edges, textures, and other things.  For 

things like classifying photos, finding objects, and, in this 

case, finding gas in hyperspectral images, CNN works well.  

CNN can interpret the hyperspectral picture data in the 

context of the extension. This lets the model find important 

patterns that are necessary for finding gas emissions, 

especially when used with Bi-directional Recurrent Neural 

Networks (Bi-RNNs) or other sequence-based models. 

b) Extension Concept: CNN + BiGRU Model: 

There is a better hyperspectral gas detection model that uses 

CNNs and BiGRUs.  CNN can learn important structures 

and patterns from hyperspectral image data, such as edges 

and gas spectral properties.  One method that CNN layers 

might be able to find gas leaks that are spread out in space is 

by keeping track of spatial hierarchy.  The BiGRU model 

uses spatial features taken from the CNN to find temporal 

correlations, as hyperspectral pictures are usually made up 

of a sequence of frames or time-series data.  BiGRU is a 

bidirectional RNN that looks at input in both directions so 

that it may learn from both past and future time periods.  

The model's dual-directional learning has made it better at 

finding fuel emissions and changes over time.  CNN's 

spatial processing skills and BiGRU's temporal connections 

should assist hyperspectral data better identify gases.  This 

improvement should make the model stronger and more 

efficient by looking at complicated geographical and 

temporal data, which should make predictions more 

accurate. 

4. EXPERIMENTAL RESULTS 

The experimental evaluation demonstrated that the proposed 

ensemble model significantly outperformed traditional 3D-

CNN and autoencoder-based methods in detecting methane 

and sulphur dioxide gases. Using pre-extracted features 

from the Methane Monitoring dataset, the model achieved 

higher sensitivity, precision, and overall classification 
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accuracy. The inclusion of CNN for spatial features, Bi-

Directional networks for sequence learning, and GRU for 

temporal pattern recognition resulted in a more robust 

detection system. Evaluation metrics such as F1-score, 

confusion matrix, and ROC curves confirmed that the 

ensemble approach not only improved detection rates but 

also reduced false positives, showcasing its effectiveness in 

real-world gas monitoring scenarios. 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. To 

estimate the accuracy of a test, we should calculate the 

proportion of true positive and true negative in all evaluated 

cases. Mathematically, this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

  

 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones classified as 

positives. Thus, the formula to calculate the precision is 

given by: 

Precision = True positives/ (True positives + False 

positives) = TP/(TP + FP) 

  

 

Recall: Recall is a metric in machine learning that measures 

the ability of a model to identify all relevant instances of a 

particular class. It is the ratio of correctly predicted positive 

observations to the total actual positives, providing insights 

into a model's completeness in capturing instances of a 

given class. 

  

 

F1-Score: F1 score is a machine learning evaluation metric 

that measures a model's accuracy. It combines the precision 

and recall scores of a model. The accuracy metric computes 

how many times a model made a correct prediction across 

the entire dataset. 
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MAP: MAP (Mean Average Precision) is a metric used to 

evaluate the performance of information retrieval systems. It 

measures the average precision across multiple queries or 

classes. Precision measures the accuracy of retrieved results, 

while Average Precision (AP) calculates the average 

precision for each query. MAP computes the average of AP 

scores across all queries or classes, providing a single 

measure of performance for the entire system. 

 

 

 

Fig.6. Performance Evaluation 

 

 

 

Fig.7. dataset 

 

Fig.8. results  

 

Fig.9. Accuracy results  

5. CONCLUSION 

The suggested extension model, which combines CNN and 

BiGRU, did a better job of finding gas using hyperspectral 

image data.  The model was able to find methane and 

sulphur dioxide emissions more accurately and reliably than 

classic approaches like SAM by using CNN to extract 

geographical features and BiGRU to capture temporal 

dependencies.  By combining spatial and temporal 

processing, it was possible to find complicated patterns, 

which made predictions more reliable under different 

environmental situations.  This mixed method shows how 

deep learning may improve gas leak detection systems, 

making them more effective and adaptable for use in the real 

world. 

6. FUTURE SCOPE 

By adding additional attention methods to the proposed 

CNN + BiGRU model to focus on important spectral 

characteristics, detection accuracy may be improved even 

further.  In the future, researchers may look at transformer-

based systems to better handle long-range dependencies in 

hyperspectral data.  Also, the model may be made better at 
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finding new gases by adding more complete information 

from industrial and environmental monitoring sources.  You 

can even make real-time implementations with edge devices 

or IoT frameworks that let you find gas leaks on location.  

Adding explainable AI approaches can also make the model 

easier to grasp, which can assist academics and businesses 

better understand how it makes decisions. 
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