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ABSTRACT 

This study examines numerical approximation of across mathematics as a whole; functions have 

a much more pervasive presence than relations, their more general cousins. However, with 

regard to the metamathematics of reasoning about these entities, the situation has, historically, 

been reversed. Initially, the purpose of this work was algebraic logic in the strict sense. That is to 

say, the relations were providing the semantics for logical formulas. This is perhaps the 

explanation as to why, until recently, the corresponding theory of functions was relatively less 

developed, since the semantics of formulas is not a role so naturally suited to functions. 

However, increasingly in the history of relations, computer science has become a source of 

motivation, with binary relations providing the semantics for, in particular, (nondeterministic) 

computer programs. In this view, the relation relates states of the machine before the program is 

executed to possible states after it is executed. 
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INTRODUCTION 

Despite the ubiquity of functions in 

mathematics, prior to the turn of this century 

the only sustained period of activity on 

reasoning with (possibly partial) functions 

was the 1960s, when the semi group theorist 

Boris Schein and associates were active in 

this area.
2,3

 In the last fifteen years however, 

interest has rekindled, and a regular stream 

of papers has been appearing, with computer 

science considerations a prime motivation. 

Whenever we have a concrete class of 

algebras whose operations are set-

theoretically defined, we have a notion of a 

representation: an isomorphism from an 

abstract algebra to a concrete algebra. Then 

the representation class—the class of 

representable algebras—becomes an object 

of interest itself. One possibility—the focus 

of this thesis—is for the concrete algebras to 

be algebras of partial functions, and for this 

scenario various signatures have been 

considered. Often, the representation classes 

have turned out to be finitely axiomatisable 

varieties or quasivarieties. 

Algebras of partial functions 

Various classes of algebras of relations 

Algebras of partial functions are algebras of 

functional relations, which for a binary 

relation R means 

xRy ∧ xRy
′
 → y = y

′
 

for all x, y and y
′
. Hence algebras of partial 

functions are simply yet further variants of 

algebras of relations, and the methodology 

we use is exactly the same: each choice of 

set-theoretic operations gives a notion of 

representability for abstract algebras, and we 

can then study the representation class and 
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related issues such as finite or complete 

represent ability. 

Unary functions 

The basic and most common case is to 

consider unary partial functions, that is, 

functional binary relations on some base set 

X. 

We first give a non-exhaustive list of 

operations that have appeared in work on 

algebras of unary partial functions. So great 

a proportion of the operations have only a 

single symbol for both set-theoretic and the 

abstract operations that in this section we 

only use one symbol set. We have already 

met 

• function composition:   ;   (a special case 

of relation composition),
8
 

• intersection: · 

• empty function: 0 

• identity function: 1’ (defined on the 

specified base), and there is also 

• domain:    D    a unary operation—D(f ) is 

the identity function restricted to the 

domain of f , 

• antidomain:    A    a unary operation—A(f 

) is the identity function restricted to those 

points in the base where f is not defined, 

• range:    R    a unary operation—R(f ) is 

the identity function restricted to the range 

of f , 

• fixset:   F    a unary operation—F(f ) is the 

identity function restricted to the fixed 

points of f , 

• preferential union:   H    a binary 

operation—the preferential union of f and 

g takes the value of f where f is defined 

and the value of g where f is not defined 

and g is, 

• relative complement:   \    the usual 

binary relative complement operation on 

sets, 

• maximum iterate:   
↑
   a unary 

operation—f 
↑
(x) is defined if only a finite 

number of iterations of f are defined on x 

and takes the value f
n
(x) for the maximum 

value of n that this is defined. So 

 
The reader will note there are operations 

featuring heavily in the section on binary 

relations but absent in the above list. If an 

operation on partial functions does not in 

general yield a function, then it is not 

terribly useful to be able to reason about 

algebras of partial functions with that 

operation in the signature. Firstly, if we ever 

want to apply a validity of such algebras to 

any specific functions, we are burdened with 

proving that those functions can coexist in 

an algebra of that signature and not generate 

a non-function. Secondly, such algebras are 

often so restricted as to not be interesting. 

Take collections of partial functions closed 

under unions: there cannot be even one point 

that can map to more than one place. 

Signatures containing complement are even 

worse: there could not be more than two 

points in the base. 

The restriction to a single fixed base set X is 

for many signatures not important, as we can 

reduce to the single base case by taking a 

union of bases. This is not true of signatures 

containing antidomain though, because the 

antidomain operation is corrupted by 

expanding the base. Nevertheless, 

throughout this thesis we only concern 

ourselves with the single-base-set setup. 
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Having indicated a correspondence between 

operations on partial functions and symbols, 

as we have done above, we get a definition 

of representation by partial functions for any 

signature containing any combination of 

symbols in the correspondence. Let Σ be 

such a signature and A a Σ-algebra. A 

representation of A by partial functions is 

an isomorphism from A to an algebra whose 

elements are partial functions and whose 

interpretations are the indicated operations. 

 

COMPLETE REPRESENTATION BY 

PARTIAL FUNCTIONS FOR 

COMPOSITION, INTERSECTION AND 

ANTIDOMAIN 

Extra conditions we can impose on a 

representation are to require that it be meet 

complete or to require that it be join 

complete. A representation is meet complete 

if it turns any existing infima into 

intersections and join complete if it turns 

any existing suprema into unions. Hence we 

can define meet- complete representation 

classes and join-complete representation 

classes. In many important cases these two 

classes coincide. Bounded distributive 

lattices represented as rings of sets are an 

example where they do not. 

In, Hirsch and Hodkinson showed that when 

the representation class is elementary, the 

com- plete representation class may (as is 

the case for Boolean algebras represented as 

fields of sets) or may not (relation algebras 

by binary relations) also be elementary. 

In this study we investigate complete 

representation by partial functions for the 

signature {;, ·, A} of composition, 

intersection, and antidomain. We see that for 

this particular signature the algebras behave 

in many ways like Boolean algebras. We 

show that, as one consequence of this 

similarity to Boolean algebras, a 

representation by partial functions is meet 

complete if and only if it is join complete. 

We show that a representation is complete if 

and only if it is atomic. We use the 

requirement that completely representable 

algebras be atomic to prove that the class of 

completely rep- resentable algebras is not 

closed under subalgebras, directed unions or 

homomorphic images and is not 

axiomatisable by any existential-universal-

existential first-order theory. 

We investigate the validity of various 

distributive laws with respect to the classes 

of representable and completely 

representable {;, ·, A}-algebras. This 

enables us to give an example of an algebra 

that is representable and atomic, but not 

completely representable. 

We present an explicit representation, which 

we use, to prove our main result: the class of 

completely representable algebras is a basic 

elementary class, axiomatisable by a 

universal-existential-universal first-order 

sentence. 

Representations and complete 

representations 

In this section we give preliminary 

definitions and then proceed to show that for 

the signature {; ·, A}, a representation by 

partial functions is meet complete if and 

only if it is join complete. 

Given an algebra A, when we write a ∈ A or 

say that a is an element of A, we mean that a 

is an element of the domain of A. Similarly 

for the notation S ⊆ A or saying that S is a 
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subset of A. The notation |A| denotes the 

cardinality of the domain of A. We follow 

the convention that algebras are always 

nonempty. If S is a subset of the domain of a 

map θ then θ[S] denotes the set {θ(s) | s ∈ 

S}. If S1 and S2 are subsets of the domain of 

a binary operation ∗ then S1 ∗ S2 denotes the 

set {s1 ∗ s2 | s1 ∈ S1 and s2 ∈ S2}. In a poset P 

(whose identity should be clear) the notation 

↓ a signifies the down-set 

{b ∈ P | b ≤ a}. 

Definition 1. Let σ be an algebraic signature 

whose symbols are a subset of {;, ·, 0, 1’, D, 

R, A}. Algebra of partial functions of the 

signature σ is an algebra of the signature σ 

whose elements are partial functions and 

with operations given by the set-theoretic 

operations on those partial functions 

described in the following. 

Let X be the union of the domains and 

ranges of all the partial functions. We call X 

the base. In an algebra of partial functions 

• the binary operation ; is composition of 

partial functions: 

f ; g = {(x, z) ∈ X
2
 | ∃y ∈ X : (x, y) ∈ f and (y, 

z) ∈ g}, 

• the binary operation · is 

intersection: 

f · g = {(x, y) ∈ X
2
 | (x, y) ∈ f and (x, y) ∈ g}, 

• the constant 0 is the nowhere-

defined function: 

0 = ∅, 

• the constant 1’ is the identity 

function on X: 

1’ = {(x, x) ∈ X
2
}, 

• the unary operation D is the 

operation of taking the 

diagonal of the domain of a 

function: 

D(f ) = {(x, x) ∈ X
2
 | ∃y ∈ X : (x, y) ∈ f }, 

• the unary operation R is the 

operation of taking the 

diagonal of the range of a 

function: 

R(f ) = {(y, y) ∈ X
2
 | ∃x ∈ X : (x, y) ∈ f }, 

• the unary operation A is the 

operation of taking the 

diagonal of the antidomain of 

a func tion—those points of X 

where the function is not 

defined: 

A(f ) = {(x, x) ∈ X
2
 | ∃/y ∈ X : (x, y) ∈ f }. 

The list of operations in Definition 1 does 

not exhaust those that have been considered 

for partial functions but does include the 

most commonly appearing operations. 

Definition 2. Let A be an algebra of one of 

the signatures specified by Definition 1.  A 

repres- entation of A by partial functions 

is an isomorphism from A to algebra of 

partial functions of the same signature. If A 

has a representation then we say it is 

representable. 

Theorem 1 (Jackson and Stokes). The class 

of {;, ·, A}-algebras representable by 

partial func- tions is a finitely based variety. 

In fact in finite equation axiomatisation of 

the representation class is given, implicitly. 

So there exist known examples of such 

axiomatisations. 

If an algebra of the signature {;, ·, A} is 

representable by partial functions, then it 

forms a ·- semilattice. Whenever we treat 

such an algebra as a poset, we are using the 

order induced by this semilattice. 

The next two definitions apply to any 

situation where the concept of a 

representation has been defined. So in 
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particular, these definitions apply to 

representations as fields of sets as well as to 

repres- entations by partial functions. 

Definition 3. A representation θ of a poset P 

over the base X is meet complete if, for 

every nonempty subset exists, 

then 

 
Definition 4. A representation θ of a poset P 

over the base X is join complete if, for 

every subset  exists, then 

 
Note that S is required to be nonempty in 

Definition 4 but not in Definition 5. For rep- 

resentations of Boolean algebras as fields of 

sets, the notions of meet complete and join 

complete are equivalent, so in this case we 

may simply use the adjective complete. 

Note that if A is an algebra of the signature 

{;, ·, A} and A is representable by partial 

functions, then A must have a least element, 

0, given by A(a) ; a for any a ∈ A and any 

representation must represent 0 with the 

empty set. Similarly D := A
2
 must be 

represented by the set-theoretic domain 

operation. 

The following lemma demonstrates the 

utility of the particular signature {;, ·, A}. 

The similarity of representable {;, ·, A}-

algebras to Boolean algebras allows results 

from the theory of Boolean algebras to be 

imported into the setting of {;, ·, A}-

algebras. 

Lemma 1. Let A be an algebra of the 

signature {;, ·, A}. If A is representable by 

partial functions, then for every a ∈ A, the 

set ↓ a, with least element 0, greatest 

element a, meet given by ·, and comple- 

mentation given by b := A(b) ; a is a 

Boolean algebra. Any representation θ of A 

by partial functions restricts to a 

representation of ↓ a as a field of sets over 

θ(a). If θ is a meet-complete or join-

complete representation, then the 

representation of ↓ a is complete. 

Proof. If θ is a representation of A by partial 

functions, then b ≤ a =⇒ θ(b) ⊆ θ(a), so θ 

does indeed map elements of ↓ a to subsets 

of θ(a). We have b, c ∈ ↓ a =⇒ b · c ∈ ↓ a 

and θ(b · c) = θ(b) ∩ θ(c) is always true by 

the definition of functional representability. 

For b ≤ a 

θ(b) = θ(A(b) ; a) = A(θ(b)) ; θ(a) = θ(a) \ 

θ(b), 

so b ∈ ↓ a and θ(b) = θ(b)
c
, where the set 

complement is taken relative to θ(a). Hence 

the restriction of θ to ↓ a is a representation 

of (↓ a, 0, a, ·,) as a field of sets over θ(a) 

(from which it follows that ↓ a is a Boolean 

algebra). 

THE FINITE REPRESENTATION 

PROPERTY FOR COMPOSITION, 

INTERSECTION, DOMAIN, AND 

RANGE 

The investigation of the abstract algebraic 

properties of partial functions involves 

studying the isomorph- ism class of algebras 

whose elements are partial functions and 

whose operations are some specified set of 

operations on partial functions—operations 

such as composition or intersection, for 

example. We refer to algebra isomorphic to 

an algebra of partial functions as 

representable. 

As we have indicated in previous chapters, 

one of the primary aims is to determine how 
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simply the class of representable algebras 

can be axiomatised and to find such an 

axiomatisation. Often, the representation 

classes have turned out to be axiomatisable 

by finitely many equations or quasi-

equations ;     we detailed this earlier,  

Another question to ask is whether every 

finite representable algebra can be 

represented by partial functions on some 

finite set. Interest in this so-called finite 

representation property originates from its 

potential to help prove decidability of 

representability, which in turn can  

Recently, Hirsch, Jackson, and Mikula´s 

established the finite representation property 

for many sig- natures, but they leave the 

case for signatures containing the 

intersection, domain, and range operations 

together open. 

In this chapter we prove the finite 

representation property for the most 

significant group of outstanding signatures, 

which includes a signature containing all the 

most commonly considered operations on 

partial functions. From our proof we obtain 

a double-exponential bound on the size of 

base set required for a representation. It 

follows as a corollary that representability of 

finite algebras is decidable for all these 

signatures. As an additional observation, we 

give an example showing that there are 

signatures for which the finite representation 

property does not hold for representation by 

partial functions. 

The results presented here originate with 

McLean. The contribution of the second 

author is to translate the original proof of the 

finite representation property into a 

semantical setting, so that the presence of 

antidomain is not necessary. 

Algebras of partial functions 

In this section we give the fundamental 

definitions that are needed in order to state 

the results contained in this chapter. 

Given an algebra A, when we write a ∈ A or 

say that a is an element of A, we mean that a 

is an element of the domain of A. We follow 

the convention that algebras are always 

nonempty. 

Definition 1. Let σ be an algebraic signature 

whose symbols are a subset of {;, ·, D, R, 0, 

1’, A, F, Џ,↑, 
−1

}. An algebra of partial 

functions of the signature σ is an algebra of 

the signature σ whose elements are partial 

functions and with operations given by the 

set-theoretic operations on those partial 

functions described in the following. 

Let X be the union of the domains and 

ranges of all the partial functions occurring 

in an algebra ϗ. We call X the base of A. 

The interpretations of the operations in σ are 

given as follows: 

• the binary operation ; is composition 

of partial functions: 

f ; g = {(x, z) ∈ X
2
 | ∃y ∈ X : (x, y) ∈ f and (y, 

z) ∈ g}, 

that is, (f ; g)(x) = g(f (x)), 

• the binary operation · is intersection: 

f · g = {(x, y) ∈ X
2
 | (x, y) ∈ f and (x, y) ∈ g}, 

• the unary operation D is the operation 

of taking the diagonal of the domain 

of a function: 

D(f ) = {(x, x) ∈ X
2
 | ∃y ∈ X : (x, y) ∈ f }, 

• the unary operation R is the operation 

of taking the diagonal of the range of 

a function: 

R(f ) = {(y, y) ∈ X
2
 | ∃x ∈ X : (x, y) ∈ f }, 
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• the constant 0 is the nowhere-

defined empty function: 

0 = ∅, 

• the constant 1’ is the identity 

function on X: 

1’ = {(x, x) ∈ X
2
}, 

• the unary operation A is the 

operation of taking the 

diagonal of the antidomain of 

a func- tion—those points of 

X where the function is not 

defined: 

A(f ) = {(x, x) ∈ X
2
 | ∃/y ∈ X : (x, y) ∈ f }, 

• the unary operation F is 

fixset, the operation of taking 

the diagonal of the fixed 

points of a function: 

F(f ) = {(x, x) ∈ X
2
 | (x, x) ∈ f }, 

• the binary operation Џ is 

preferential union: 

 
• the unary operation 

↑
 is the 

maximum iterate: 

 

 
• the unary operation 

−1
 is an 

operation we call opposite: 

f 
−1

 = {(y, x) ∈ X
2
 | (x, y) ∈ f and ((x

′
, y) ∈ f 

=⇒ x = x
′
)}. 

The list of operations in Definition 1 does 

not exhaust those that have been considered 

for partial functions but does include the 

most commonly appearing operations. 

Definition 2. Let A be an algebra of one of 

the signatures permitted by Definition 1. A 

repres- entation of A by partial functions 

is an isomorphism from ϗ to an algebra of 

partial functions of the same signature. If A 

has a representation then we say it is 

representable. 

In Jackson and Stokes give a finite 

equational axiomatisation of the 

representation class for the signature {;, ·, D, 

R} and similarly for any expansion of this 

signature by operations in {0, 1’, F}. 

Hirsch, Jackson, and Mikula´s give a finite 

equational axiomatisation of the 

representation class for the signature {;, ·, A, 

R} and similarly for any expansion of this 

signature by operations in {0, 1’, D, F, H}. 

For expanded signatures containing the 

maximum iterate operation they give finite 

sets of axioms that, if we restrict attention to 

finite algebras, axiomatise the representable 

ones. 

The operation that we call opposite is 

described in where Menger calls the 

concrete operation ‘bilateral inverse’ and 

uses ‘opposite’ to refer to an abstract 

operation intended to model this bilateral 

inverse. The opposite operation appears 

again in Schweizer and Sklar’s  and but 

thereafter does not appear to have received 

any further attention. In particular, for 

signatures containing opposite, 

axiomatisations of the representation classes 

remain to be found. 

CONCLUSION 

We have added to the signatures for which 

the finite representation property is known, 

including a signature expressing almost 

every operation that has been considered. 
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For multiplace functions, we have added 

finite axiomatisability results and results on 

the complexity of equational theories, and 

we have begun the investigation of complete 

representability for partial functions, 

obtaining a finite axiomatisability result. 

This again contrasts with relations. These 

are all positive results; we obtained some 

more finite axiomatisations, but also showed 

some representation classes are not finitely 

axiomatisable. It would be interesting to 

investigate exactly what causes this 

divergence from our other results and all 

those that have come before. For reasoning 

with partial functions, the application we 

gave the most prominence to was using 

functions to model the dynamic action of 

computer programs. So it is worth 

discussing what might be necessary to 

reason in a way that has practical value, and 

whether this is feasible. For applications, it 

is deciding the validity of formulas, more 

than having axiomatisations or deciding 

representability that is useful. Of course, the 

fewer the syntactic restrictions on the 

formulas under consideration, the more 

complex deciding validity is likely to 

become. Reducing this to proving an 

equation, the task cannot be fully automated, 

for the equation is only valid on condition of 

the validity of two simpler equations, which 

then have to be verified by hand after 

instantiating variables to atomic 

programming statements. Viewed another 

way, if the right relationships between 

atomic statements are known and supplied to 

the automated prover, and then being able to 

deduce a quasiequational validity is 

precisely what is needed for the prover to 

perform the verification task. 
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