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Abstract Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot
handle nonuniform blurring situations that frequently arise from tilts and rotations in hand -held cameras. In this paper, we propose
a methodology for face recognition in the presence of spas@arying motion blur comprising of arbitrarily -shaped kernels. We model
the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show thasét of
all images obtained by noruniformly blurring a given image forms a convex set. We first propose a nonuniform blurobust
algorithm by making use of the assumption of a sparse camera trajectory in the camera motion space to build an energy functiéth
I1-norm constraint on the camera motion. The framework is then extended to handle illumination variations by exploiting the fattat
the set of all images obtained from a face image by namiform blurring and changing the illumination forms a bi-convex set. Finally,
we propose an elegant extension to also account for variations in pose.

Index Term® Face recognition, noruniform blur, sparsity, illumination, pose.

I. INTRODUCTION recognition. However, deblurring artifacts are a major source
- of error especially for moderate to heavy blun§. Joint
T IS wellknown that the accuracy of facecognition : P y - avy i) J .
. . : : ._deblurring and recognition [15], the figide of which is
systems deteriorates quite rapidly in unconstraine ; . L : .
. . . ._computational complexity. (iii) Deriving blunvariant
settings [1]. This can be attributed to degradations . .
- L S atures for recognition [16], [17]. But these are effective only
arising from blur, changes in illumination, pose, an

expression, partial occlusions etc. Mation blur, in particuIaPr mild blurs. (v) Thedirect recognition approach of [18]

deserves special ion owing to the ubiquity of mobile ahd [19] in which reblurred versions from the gallery are

. . : : . compared with the blurred probe image. It is important to note
phones and hanlgeld imaging devices. Dealing with camer L

. S - that all of the above approaches assume a simplistic -space
shake is a very relevant problem because, while tripods hingder,

. . : . _INvariant blur model. For handling illumination, there have
mobility, reducing the exposure time affects image quality, _. S : .

P ainly been two dirgtions of pursuit based on (i) the 9D
Moreover, inbuilt sensors such asrmgg and accelerometers

subspace model for face [20] and (ii) extracting and matching
have their own limitations in sensing the camera motion. In #ilumination insensitive facial features [21], [22]. Tan et al.
uncontrolled environment, illumination and pose could al§d3] combine the strengths of the above two methods and
vary, further compounding the problem. The focus of thigopose an integrated framework thatludes an initial
paper is on developing a system that can recognizes fadlumination normalization step for face recognition under
across nowuniform (i.e., spaceariant) blur, and varying difficult lighting conditions. A subspace learning approach
illumination and pose. using image gradient orientations for illumination and
Traditionally, blurring due to camera shake has beenclusionrrobust face recognition has been proposed in [24].
modeled as a convolution with a single blur kernel, and tReactical face recognition algorithms must also possess the
blur is assumed to be uniform across the image [2], [8ility to recognize faces across reasonable variations in pose.
However, it is spaceariant blur that is encounteredMethods for face recognition across pose can broadly be
frequently in handheld cameras [4]. While techniques havelassified into 2D and 3D techniques. A good survey article
been proposed that address the restoration efindarm blur on this issuean be found in [25].
by local spacénvariance approximation [B]7], recent  Although the problem of blur, illumination and pose are
methods for image restdian have modeled the motien individually quite challenging and merit research in their own

blurred image as an average of projectively transformegdht, a few attempts have been made in the literature to
images [8][12].
Face recognition systems that work with focused images
have difficulty when presented with blurred data. Approaches
to face recognition from blurred imagecan be broadly
classified into four categories. (i) Deblurribgsed [13], [14]
in which the probe image is first deblurred and then used for
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We assume a planar structure for the face [14], [17], [19]
and use the geometric framework proposed in[I&]], [29] to
model the blurred face as the weighted average of
geometrically warped instances (homographies) of the focused
gallery image. The arped instances can be viewed as the
intermediate images observed during the exposure time. Each
warp is assigned a weight that denotes the fraction of the
exposure duration for that transformation. The weights
corresponding to the warps are referred to te
transformation spread function (TSF) [29] in the literature.

We develop our basic namiform motion blur (NU
MOB)-robust face recognition algorithm based on the TSF

) model. On each focused gallery image, we apply all the
Fig. 1. (a) Focused image, (b) synthetically blurred image obtained OSSIbI.e tranSformatlons thatxist in the. 6D space (3
apblyiﬁg random irplane tran:slations and rotations on the focused image, E{mensmns for translations and 3 for rotations) and stack the
point spread functions (PSF) at various locations in the image spatén resulting transformed images as columns of a matrix. We
presence of n_ouniform blur which cannot be explaingd by the convolutioextend the convexity result proved for the simple convolution
ot capturad by a i camora, 0 mages from he Aa(Eidel in [19] to the TSF model and show that taed all

images obtained by blurring a particular gallery image is a

o i convex set given by the convex hull of the columns of the
jointly tackle some of these issues under onégork. Patel .,rresponding matrix. To recognize a blurred probe image, we
et al. [26] have proposed a dictiondigsed approach 10 ninimize the distance between the probe and the convex
recognizing faces across illumination and pose. A Spatgfnpination of the columns of the transformation matrix
m|n|m|ze}tlon technlqu'e for recognizing fz;ces acroYyrresponding to each gallery image. The gallery image
illumination and occlusion has been proposed in [27], whilg,,se distance to the probe is minimum is identified as a
[28], which is lased on similar principles, additionally offersnaich we do not impose any constraints on the nature of the
rqbustness to glignment and pose. But these works do not geg! Following [9], [11], we assuméat the camera motion
with Dblurred images. A very recent work [19] form"’_‘”%rag’ectory is sparse in the camera motion space. This allows us
addresses the problem of recognizing faces from distgfitconstryct an optimization function witnorm constraint
cameras across both blur and illuation wherein the o, the TSF weights. Minimizing this cost function gives us an
observed blur can be welpproximated by the convolutiongtimate of the transformations that when mgblon the

model. To the best of our knowledge, the only attempt in gy .61y image results in the blurred probe image. Each gallery
literature at recognizing faces across uoiiform blgr has_ image, blurred using the corresponding optimal TSF, is
been made in [17] in which the uniform blur model is apblig,qmnared with the probe in the LBP (local binary pattern)
on ovgrlgppmg patches to perform recognition o_n_the basi ] space. This direct method of recognition allows us to
a majority vote. However, they do not explicitly modelircymyentthe challenging and Hbosed problem of single

illumination changes going from gallery to probe. We woulh,qe plinddeblurring. The idea of reblurring followed by

like to point out that both [17] and [19] limit their discussion gp_pased recognition has been suggested in [19], and LBP

to frontal feces. histograms have been shown to work well on blurred faces

In this paper, we propose a face recognition algorithm thgt, \ve have extended the formtidga in [19] to space
is robust to noruniform (i.e., spacearying) motion blur varying situations.

arising from relative motion between the camera and the-thermore, we propose extensions to the basic framework
subject. Following [19], we assume that onlgiaglegallery , pandie variations in illumination as well as pose. We
image is avadble. The camera transformations can rangenoximate the face to a convex Lambertian surface, and use
from |r_1—plane translations a_md rotations to -ofiplane . gp subspace model in [20] and tieconvexity property
translations, oubfplane rotations, and even general 6B 5 ta0e under blur and illumination variations in the context
motion. An example is shown in Fig. 1. Observe that the bl the TSE model. Our motion blur and illumination
on the faces can be significantly roniform. The simple yet (MOBIL)-robust face recogniton algorithm uses an
restrictive convolution model fails to explain this blur and &ternating minimization (AM) scheme wherein we solve for
spacevarying formulation becomes necessary. Subsequetly, TSE weghts in the first step and use the estimated TSF to
we also show how the proposed method can be elegagllke for the nine illumination coefficients in the second, and
modified to account for variations in illumination andspo 4 on jterating till convergence. We finally transform (reblur
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and relight) each gallery image and compare it with the prablamination and pose into the basic formulation discussed in
in the LBP spae. Using a rough initial estimate of the pose tBection 1ll. Section V contains results and comparisons on
synthesize gallery images in the new pose, we extend tyatheticand real examples involving blur, illumination and
formulation and propose an algorithm to handle motion blyose as well. Section VI concludes the paper.
illumination and pose (MOBILAP) for nefrontal faces. The
new synthesized gallery imaggereblurred and relit as before, Il. CONVOLUTION MODEL FORSPACEINVARIANT BLUR
and compared with the probe using LBP. As discussed in the introduction, while the convolution
Differences With [19]: The DRBF and IRBF methodsmodel is sufficient for describing blur due tepfanecamera
proposed in [19] are restricted to the simplistic convolutidranslations, a major limitation is that it cannot describe
blur model which is valid only when the motion of the camesgveral other blurring effects (including eftplane motion
is limited to in-plane translations. This assumption of uniforrand inplane rotation) arising from general camera motion. In
blur does not hold true in real settings because camera thder to demonstrate the weakness of the convolution model
and rotations occur frequently in the case of Haeld in handling images blurred due to camera shake, we
cameras [11]. The algorithms proposed in this paper, Synthetically blur the focused gallery image to generate a
contrast, are capable of hdind any general motion of theprobe, and provide both the gallery image and the blurred
camera which sets our work distinctly apart from [19]. Iprobe image as input to two algorithmthe convolution
addition, we handle pose variations while the discussionrirodel which assumes spaceinvarianurpland the non
[19] is restricted to frontal faces. Our method allows femiform motion blur model (to be discussed in Section IlI)
arbitrarily-shaped spaeearying kernels acrosshe image which represents the spaeariant blurred image as a
unlike [19] which seeks to explain the blur usingirrglePSF weighted average ajeometrically warpednstances of the
for the entire image. In fact, our scheme based on the Tg#Hlery. Next, we compare the reconstruction
model subsumes the work in [19for the special case of only Blurred Convolution  Space-variant
in-plane translational motion, the TSF reduces to a PSF. observation model model
The work proposed in this paper advances the -sifite
theart in many ways as discussed next.
w» This is the first attempt t@ystematicallyaddress face
recognition under (i) neainiform motion blur and (ii) the
combined effects of blur, illumination and pose. Focused
» We prove that the set of all images obtained by-non gallery
uniformly blurring a given image forms a convex set. We
also show that the set of all images obtained from a face
image by noruniform blurring and change of
illumination forms a biconvex set.
» We extend our method to noffrontal situations by

transforming the gallery to a new pose.
» We propose a mufscale implementation that is efficient
both in terms of computation as well as memory usage.

» We  demonstrate  superior  performance  over
contemporary methods orstandard face databases
(FERET, PIE, Extended Yale B) in the presence of blufig. 2. Comparing the reconstructed faces and the reconstruction errors
illumination and pose variations, as well as a real data&@y'S) using the corslution model and the spas@riant model. The gallery

. . . . . image is shown in column 1. The results are shown in row 1 for space
which .Comams’ In add'_tlon to these degradatlons’ SM@ariant blur and rows 2 through 4 for spaegiant blur. The RMS errors
occlusions and expression changes. for the convolution model in column 3 and the speagant model in column
At ; . 4, respectively, araow 1: 0.04, 0.04, row 2: 12.48, 0.05, row 3: 14.88, 0.15,

Th? organization Of, theest of the pqper IS as _fOHOWS', Vveand row 4: 15.31, 5.15. (The blurred image in column 2 was used as the

review the convolution model for uniform blur in Section Heference for RMS computation.)

and discuss its shortcomings. In Section Ill, we develop the

non-uniform motion blur model for faces and propose 8 ors petween the probe and the gallery reblurrétguse
elegant and efficient scheme for face reagm under comera motion estimated by both the methods. This
spacevarying motion blur. Experimental results are given f&periment is performed for different camera motions as
purpose of validation. In  Section IV, we incorporatgpqyn in Fig. 2 row 1: inplane translations, row 2:-plane
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translations and rotations, row 3: @ftplane rotations, and
row 4: full 6D blur. The reconstructed faces as well as the
RMS errors are also shown in Fig. 2. Note that there is no
change in illumination or pose between the gallery and the 0

probe, and only the blur has to be accounted for. Observe that

except for implane translatios (row 1), where, as expected . . . -

the RMS is the same for both the models, in all the thléollowmg prior works in face recognition, [14], [17], [19], we

cases. the s fiant motion blur model qives sianificant oB model the face by a flat surface i.e., all the points are at a
' pade 9 9 yﬁiestancedO from the camera. Therefore, the depth is constant,

and the poink , at whichX gets projected in the cameranca
tl‘())e obtained through a homogragtyasx =H x where

R=ewhere. uz 0 bx0 (Dby ‘x

RMS value is smaller than one, except far Biotion (row 4)
for which it is marginally higher as our algorithm needs
search through a very large set of transformations.

I1l. M OTION BLUR MODEL FORFACES H =KvR +1 o [ ]bl

The apparent motion of scene points in the image will vary TOO1 K, 2) do
at different locations when the cam motion is not restricted o . _
to in-plane translations. In such a scenario, the spaggng If 9. denotes the transformed image (due to relative motion)
blur across the image cannot be explained using iptured at time instantthen we can writg (H x) = f (x), or
convolution model and with a single blur kernel. In this _ 1 1 .
section, we present the spa@siant motion blur modes]i alternatelyg (x) = f (H t'x) whereH t"denotes the inverse of

[10], [29] and illustrate how this model can explain geometrt.. The arguments of in f (H +'x), which are the image

degradations of faces resulting from general camera motiggerdinates, correspond to the first two elements gl (a 3

Later, we propose an optimization algorithm to recover ttl(el i dinh ; We follow thi
camera motion. vector) expressed in homogeneous form. We follow this

Letf: RM wenote the focused gallery face captuby a convention throughout the paper. Now tilerred faceg can

) . be interpreted as the average of transformed versiorfs of
still camera. Assume the origin to be the camera center and let . ] ) ]
during exposure. Therefore, the intensity at an image moint

X = [X Y 7" denote the spatial coordinates of a point on tta)% the blurred face is given by

face. Let the corresponding image coordinates bé,*andy

= %X wherev denotes the focal length of the camera. The =1Te b1x)d_ (3)

- : g()f (H.
projection ofX on the image plane can be representexl as Teo

KX, whereK, = diag(v,vl). To get the image coordinatés whereT,is the total exposure duration.

L , The blurred face can be more appropriately modeled in
y), the standard practice is to expr&se homogeneous form o
terms of the gallery face by averaging it over the set of

i.e., scalex by its third element. At each instant of time possible transformations resulting from the relative motion

during exposure, the coordinates of the 3D pﬁimj‘]anges to between the camera and the SubjeCt.'lLetenOte this set of

i i a(IJ possible transfornteons. Lethy : T h +wcalled the
X =R X + T due to relative motion between the camera an i ) ]
’ ’ ’ transformation spread functioff SF), denote a mapping from

the subject. HereT_= [Ty Ty T]"is the translation vector, T o nonnegative real numbers. The value of the TISRS),

andR represents the rotation matrix parameterized in termsfef each transformatios ¥ T, denotes the fraction of the total

. . exposure duration for which themara stayed in the position
the angles of rotatiohy, ‘ yand‘ zabout the three axes using P Y P

that caused the transformatibtw" on the image coordinates.

the matrix exponential Hence, «T ht (& = 1. Note that the ternx denotes the

transformation parameters corresponding to the homography

00 bz vy matrix Ha". The blurred image can be equivalently written as
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an average of warped versionsfafeighted by the TSHy, matrix A, where the columns & are warped versions dfas
ie., determined by the TSF.

Proof: Let g; and g, be elements from the s& Then
g0 = h(Qf(HaX)d<  (4)<T there exist TSFhr; andhy,, both satisfying the conditiorts;
) ) ) o X0 and|| hr|| 1=1,i = 1,2 such thag; = Aht;andgz= AhT2.
Observe that a single TSF using (4) is sufficient to describe
the observed spaaarying blur. When thenotion is confined To show that the sé& is convex, we need to show that for any
to 2D translations, the TSF will have nparo weights only o o
for the inplane translational components and will be identicalSatisfying 04 X1, gs= ' gi+1b' giis an element 8. Now
to the PSF i.e., the <_:0nvo|u_tion model for the blur is a specé%llzJ G+ @
case of the spaegarying motion blur model.

In practice, the TSF is defined on the discrete =iAhp +(1b Ahr,
transformation spac& and can be considered as a vector in
R'TwhereNyis the total number of transformations present in =A0hn +(1b hyy)

T. Nris controlled by the number of translation steps along
each axis as well as thmimber of rotation steps about each
axis. Hence,

=Ahgs (8

Here hy3 is honnegative and sums to one, and heggis an
hNFT(< BINDK X0 NforT, xk NeT, 1x,2N,.... ,x NN 3, . In the element oB. Thus,Bis a convex set defined as
discrete domait\ ,, K=" hr (<) =1,

{AnT| hT x0,|| ht|| 1=1}, 9)
(4) can be written as which, by definition, is the convex hull of the columnsAof
NT Note thatht is sparse since for motion blur only a
rc)=h fH N c 1T 5 fraction of the total posesrwill have nonzero weights [29].
g(re) =hr(S) T HAre 117) ®) We make use of this fact to build the following energy
k=1 function
whereg(r,c) andf (r,c) represent the pixel intensity @ic) for E(hT) = || g bAhT]| %+ Bllht||1

the discretized blurred image and latent image, respectively. If
o, f represent the blurred image and the latent image,

respectively, lexicographically ordered as vectors, then (5) can L i ,
be expressed in matrecta notation as The optimization problem in (10) can be solved using the

nnLeastR function of the Lasso algorithm [31] which
g =Ahy such thatyx0,|| hr|| 1=1. (6) considers the additionall;-norm and nomegativity
constraints. This energy function when minimized provides an
estimate of the transformations that must be applied to the
gallery image to produce the blurred image.

subject tahy x0. (10)

where A v RV is the matrix whoseN; columns contain
warped copies df, hy denotes the vector of weights(<), and
N is the total number of pixels in the image. The WarpeAd Multiscale Implementation

versions of are obtained by applying the homography matrix Since we are fundamentally limited by the resolution of the
H' corresponding to each of thé transformations on the images, having a very fine discretization of the transformatio
gallery image. From (6), the set of all blurred images obtaingpiaceT leads to redundant computations. Hence, in practice,
the discretization is performed in a manner that the difference
in the displacements of a point light source due to two
B {AhT| hT X0,|| hT|| 1= 1} (7) different transformations from the discrete Bés at least one
pixel. It should be noted that since the TSF is defined over 6

Proposition 1: The set of laimagesB obtained by blurring dimensions, doubling their sampling resolution increases the
an imagef using the TSF model is a convex set. Moreover, tf$al number of posesr, by a factor of 2 As the number of
convex set is given by the convex hull of the columns of fi@sformations in the spack increases, the optimization

from f can be written as
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process becomes inefficient and time consuming, especiahe of these matrices. Therefore, the identity of the probe
since only a few of these elements have-pero values. image can be found by minimizing the projection errogof
Moreover, the resulting matri& will have too many columns onto {A,}s. The reconstruction erraf, can be obtained by

to handle. Following [9], we resort to a multiscale framewogolving

to solve this prolem. We perform multiscaling in 6D (instead _ )

of 3D as in [9]). We select the search intervals along eacB#m=min|| gbAmhT|||| h1|| 1 2 +/

dimension according to the extent of the blur we need to ht

model, which is typically a few pixels for translation and a subject tdhr k0. (12)

few degrees for rotation.

The ideais to start from a coarse representation of th®ne could compute,for eachm= 1,2,..., M and assigmy the
image and the TSF, and repeatedly refine the estimated TSgggtity of the gallery image with the minimudg. Note that
higher resolutions. Downsampling a blurred image by i@ (11), all the pixels receive equal weight and influence the
certain factor reduces the amount of pixel displacements dusE estimation step equally. But not all regions in the face
to camera translation alongandY axes by the same factor,convey the same amount of information. Following [19], we
and if the focal length of the camera is large enough, it has m@dify the above equation by introducing a weighting matrix
same effect on the pixel displacements due to camera rotaf@@n(which weighs different regions in the face differently)
abouX and Y axes. Hence, downsampling the images algthen computing the reconstruction error between the probe

reduces the space of allowed transfornretfo image and the gallery images. Equation (11) then becomes
We first build Gaussian pyramids for both the focused and — min||W(g — R

blurred images. At the coarsest scale, the matnix built for dm by Amhr)ll2 + 8| hr|| 2

the whole transformation spa€e But it is to be noted that the

search intervals for the TSF are reduced depending on the subject tchr %0 (12)

downsampling factor. The TSRy is estimated by minimizing
equation (10). We then upsampigto the next scale usingwhere W (a diagonal matrix) is learned limwing the
bilinear interpolation, and find the naro elements of this procedure outlined in the appendix of [19]. This matrix has
upsampled and interpolated TSF. Also, using a suitalihe highest weights for regions around the eyes and de
chosen threshold, we rer® insignificant values resultingemphazises the mouth and cheeks.
from the interpolation process. This gives us several 6DIt must be mentioned that the quantityis not preferable
nonzero regions inside the transformation space. Whasn a metric for face recognition berse of its sensitivity to
finding the optimalh; at the next scale, we only search foeven small pixel misalignments. Instead, we use Local Binary
valid homographies which lie within these Rperoregions. Patterns (LBP) [30], which are reasonably robust to alignment
This corresponds to discarding many columng pofeducing errors, for the recognition task. For this purpose, we first
both the computation and memory demands of the seacompute the optimal TSk, for each galleryimage by
process. We repeat this procedure at each scale, until gbleing (12), i.e.,
optimal TSF at the finest resolution is found. The 2
improvement in speed dhaccrues is discussed in Section IlI hTm:arghmidl W (g bAmhT)ll2 + A)| hr|| 1
C. T

subject tahy x0. (13)

B. Face Recognition Across Blur ] .
Next, we blur each of the gallery images with the

Suppose we hawe! face classes with one focused galler(Xorresponding optimal TSHsr,,. For each blurred gallery
facef, for each classn, wherem= 1.2,..., M. Let us denote jmage and probe, we divide the face into owerlapping
the blurred probe image which belongs to one oMhetasses rectangular patches (details of the patch sizes can be found in
by g. Given f,s andg, the task is to find the identityi ™ [19]), extract LBP histograms independently from each patch

and
{1,2,...,M} of g. Based on the discussions in

Section lll, the first step is to generate the matrixfor each
gallery face. Then, sinag belongs to one of thkl classes, it
can be expressed as the convex combination of the columns of

1 . ) ) .
Translation along and rotation about thexis remain unchanged after
downsampling the image.
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(b) (©) (d) (e) ® ®

Fig. 3. Sample images frofoa andbj folders in the FERET database. (a) Gallery, (b) probeg(cprobe blurred synthetically using random transforma
from the TSF intervals listed in Setting Setting 5 of Section HC. To evaluate our algorithm on different types and amounts of

blur, we synthetically blur the face images with the TSF
model using the following five blur settings:
Setting 1 (S1): irplane translations, Setting 2 (S2):plane
translations and rotations, Setting 3 (S3): -auplane
rotations, Setting 4 (S4): oof-plane translations, and Setting
5 (S5): full 6D blur. We select the transformation intervals on
the mage plane, both for generating synthetically blurred
images and recognizing them, as followsplane translations
and extract LBP features. rangel’ 4b1: 4 pixels, outof-plane translations range0.8 :
3: Compare the LBP features of the probe image g with those 0.01: 1.2, in-plane rotations range 2%: 1°: 2°. The focal
of the transformed gallery images and find the closest length B set to 200 pixels which is in line with the width of
match. the image (64 pixels), and eaf-plane rotations range is

Algorithm 1 NU-MOB: Non-Uniform Motion Blur-Robust
Face Recognition

Input: Blurred probe image g and a set of gallery images
foo.m=1,2,.... M.
Output: Identity of the probe image.
1: For each gallery image f,,,, find the optimal TSF hy_ by
solving equation (13).
2: Blur each gallery image f,,, with its corresponding hr

4 .. 4
selected af bl 3.

) ) ) The transformation intervals are chosen such that synthetically
concatenate the histograms to build a global descriptor. The

intuition behind dividing the image into blocks is that the fad¥urring a 64x 64 pixel image using transformations lying in
can be seen as a composition of migatterns, and the these intervals results in moderate to heavy blur which renders
textures of the facial regions are locally encoded by the L Pa
patterns wHe the whole shape of the face is recovered by the
construction of the global histogram ie., the spatialljote that the matridnn R"in (13) has 4096 rows equal to
enhanced global histogram encodes both the appearanceti@@thumber of pixelsn the image, while the number of
the spatial relations of facial regions. We then perfor
recognition with a nearest neighlr classifier using Chi
square distance [16] with the obtained histograms as featif}@ case of Setting 2 which has-flane translations and
vectors. The steps are outlined in Algorithm 1. An alternatiygtations, Ny = (Number of translation steps aloiXgaxis) x
approach would be to use the optimal T8gto perform a
non-blind deblurring of the probe. However, weuhd that,
deblurring artifacts introduced in this process tend totation steps about-axis)=(b4: 1: 4 pixels alongX-axis) x
significantly rgduce the recognition accuracy (by almost 15&04: 1: 4 pixels alongr-axis)x (b2° : 1°: 2° aboutz-axis)= 9
to 20%) which suggests that reblurring the gallery Is

preferable to deblurring the probe. x 9 x5=405. The calculation of

challenging problem from a face recognition perspective.

(%IumnsNTis determined by the blur setting. For example, in

(Number of translation steps alongaxis) x (Number of

N proceeds along similar lines for the remaining four settings,
] and the alue of Ny is 81 for S1 and S3, 41 for S4, and
We evaluate the propasealgorithm NUMOB on the 1345005 for S5. Sample synthetically blurred probe images
standard and publicly available FERET database [32]. Sifge e five different blur settings are shown in Fig. 3. In the
this database contains only focused images, we blur Fgﬁdomly generated TSFs, the number of fmEt0
images synthetically to generate the probes. The camgd, g aphies is chosen to be a sniwittion of the total
motion itself is synthesized so as to yield a connectddipat , \mber of homographies in the TSF space. This number

the motion space. The resulting blur induced mimics the r?grhges from 10 for Settings 3 and 4, to 15 for Setting 1, and 25
blur encountered in practical situations. In all the experiments Settings 2 and 5.

presented in this paper, we use grayscale images resized t0 §4 o\ ajuate our NUMOB algorithm, we use thba and bj

x 64 pixels and we assume only one image per subject in f§@ers in FERET, both of which conta200 images with one
gdlery. image per subject. We use the folder as the gallery. Five

C. Experiments
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different probe sets, each containing 200 images, are obtaialsd compare using &wo-step normuniform deblur [9] +
by blurring thebj folder using the settings mentioned aboveecognize approach in S.Nos. 7 and 8 in Table | since neither
(See Fig. 3.) The lighting and the pose are Hraesfor both SRC nor DFR can cope with blur. Yet another -step
gallery and probe since the objective here is to study dyéseline comparison that uses LBP features extracted from the
al gorithmés capability t o deutes!prodel!forrecognitientis previded IBNw ey er
small facial expression changes exist between the gallery @Rekognition scores were computed for various blur kernel
the probe, but the weighting matri¥/ in (13) makes our sizes ranging from 3 to 13 pixels for the DRBF [19]
algorithm reasonably robust to these variations. We set tigorithm. We report the best recognition rates in Table II.
number of scales in the multiscale implementation to 3 aHidwever, we would like to add that the authors in [19] have,
offered the best compromise between running time apal their data reported recognition rates that are, on an
accuracy. average, 3 to 4 percent greater using their rDRBF algorithm.
We also compare our results with several recently propogast comparison with [17] for the spaearying cases in
face recognition &hniques S.Nos. 1(a), 2 through 9 in TableSettings 2 to 5, following the discussion in Section 4.1.2 of

TABLE |
SUMMARY OF COMPARISONTECHNIQUES UB: UNIFORM BLUR, NUB: NON-UNIFORM BLUR, I: ILLUMINATION , P: ROSE

S. Comparison Methods Degradations modeled
No. technique Approach compared with Code UB  NUB I P Remarks
1(a) DRBF [19] Direct recognition FADEIN, v X X X Targeted at recognizing faces acquired
1(b) IRBF [19] using LBP LPQ, Shared by authors v X v X from distant cameras where the
FADEIN+LPQ blur is well-approximated by convolution.
Blur invariants on a manifold FADEIN, Space-varying blur is handled using
2 (17 for recognition LPQ, Shared by authors | ' v x overlapping patches, where the blur in
[13] each patch is assumed to be uniform.
Deblurring using inferred PSF Eigen faces, . . Limited to learned blur kernels only.
3 FADEIN [14] followed by recognition Laplacian faces Our implementation | v x  x x Cannot capture the entire space of PSFs.
FADEIN + Recognition using LPQ LBP, LPQ, LPQ code LPQ’s ability to handle illumination is
4 LPQ [14] features extracted from probe [13] downloaded from v X v X|  governed by FADEIN correctly inferring
deblurred using FADEIN author’s webpage the PSF when there is a change in lighting.
1 -minimization based Nearest Neighbour, . . Dictionary is built using
5 SRC [27] on sparse representation Nearest Subspace, Our implementation | x  x v x basis images of all subjects.
Linear SVM Cannot cope with blur in the images.
6 DFR [26] Dictionary-based approach SRC, CDPCA Shared by authors X X «
Probe deblurred using space- . Deblurring code Deblurring artifacts are a major
1 [91 + SRC [27] varying blind deconv. code Not applicable downloaded from v vV v X source of error.
3 [9] + DFR [26] in [9] passed to [27], [26], the webpage of the S v v
[30] for recognition first author in [9]
9 [9] + LBP [30] v v v o x
I. While we select methods 1(a), 2 through 4 for their paper, we divided the imagnto overlapping patches
TABLE II

with sizes 75, 50 and 40 percent of the original image,
performed recognition separately on each patch and used a
majority vote to calculate the final recognition score. (For

RECOGNITIONRESULTS(%) ON THE FERETDATASET USING
NU-MOB ALONG WITH COMPARISONS

| Method [ ST ] S2 [ S3 [ s4 [ S5 ] Setting 1, the algorithm in 4.1.1 of their paper wasdli) This
NUMOB oas | 005 | o1 | o1 | 1 was repeated for various blur kernel sizes ranging from 3 to
DRBF [19] s | 7l w1l s 13 pixels, and the best recqgnition rates have been_ reported in
17 o5 | 505 | 505 | eas | 1 Tablle.ll. In our |mplementat|(_)n of the FADEIN algorithm, the
FADEIN [14] s | 25 | s | 255 | s statlstlca! m_odels for PSF inference were learned from 25
FADEIN+LPQ 41 | 3 | 11 | 2 | 0 ) PSFs which included
SRC [27] 315 | 335 | 145 | 475 | 13 |
[9]1 + SRC [27] 25.5 25 11.5 40.5 13
DFR [26] 34 31 18.5 345 16 .
[9] + DFR [26] 30 26 16.5 27 13 ;
[91 LBP [30] 39.5 30 30 44 9.5 . i
(b)

(a)

their ability to handle blurred faces, S.Nos. 5 and 6 were
chosen because comparisons with existing methods in [2@]4. () Blurred probe, (b) row itrue PSFs at three locations
and [27] suggest that the SRC and the DFR algorithms #parked by crosshairs in (), row -2PSFs estimated by our NMOB
among the best for classical face recognition applications. P ™
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24 motion blur kernels (lengtk 3,5,7,9,11,13 pixels, and ranges for implane translations (in pixels) and -mpfane

angle=0,025 @5 @75) and one Ono biotationd, regpectively arél)®.Dc(2wwboln 1], O,

Since there is only one image per subject in the curr 0. a0,

scenario, and SRC and DFR work best in the presence?gcjfwz’ 1:2, 0F:1°:17 ()0 1:3],

multiple images for edc subject, to be fair, we provide as

input to the algorithms in [26] and [27] the nine basis imal ° o 9 o o

of each subject (obtained using the relighting technlqueg&;i‘é)1 0B 1 A%, (5], eRaddi 1ol 4], (7)), 020

[26]) in the database. Table Il shows that our meth6d:1°1:26°]],

consistently performs better than contemapyp techniques,

and generalizes satisfactorily to all types of camera motion;fee - 1°: 2°], (8)B: 1: 7], H3 : 1°: 37, and (o 1: gl

probe image blurred using Setting 2 is shown in Fig. 4(a). The

true kernels at three locations marked by crosshairs on I @ 1°: 39 Itis clearfrom the plot given in Fig. 5 that our

4(a) are shown in the first row of Fig. 4(b), whitee kernels algorithm greatly outperforms all other comparison techniques

obtained from the TSF estimated by MDB are shown in as the extent of the blur is increased.

the second. Observe that the estimated PSFs closely reseml@e Effect of Underestimating or Overestimating the TSF

the true PSFs which indicates that the motion has besmarch Intervals:In all the above experiments, we have

computed correctly. assumed that the TSF limits are known, and we used the same
Using the multiscale implementation, we could obtain transformation intervals as the ones used for synthesizing the

considerable speadp of the algorithm. For example, inblur, while attempting recognition. Although in some

Setting 2, with 200 images in the gallery, while each queapplications we may know the extent of the blur, in many

image without the multiscale approach took an averagepoctical settings, we mawot. Hence, we perform the

230.80 seconds (on an 8Gb linux machine with 8 coriedlowing experiments to test the sensitivity of our algorithm

running Matlab), the multeale implementation (with numberto the TSF search intervals.

of scales set to 3) performed the task in 18.06 seconds. This /s before, théva folder of FERET is chosen as the gallery

an order of speedp. For Setting 5, where the multiscaleand the probe images are generated by blurrindpjtti@der

implementation is indispensable, the spapdis around 25 using random trasformations lying in the intervalsn-plane

times! translationso®: 1: 2] pixels, and irplane rotation§ ~ 1&xt°

. 1°]. We then perform recognition with the following seven

choices of TSF search intervals forghane translations and

in-plane rotations,espectively (1) 0, 0,

L (2) wb:1:1],0, (3)d:1:2], wt:1°:17,
=
;% - WHE) w0 132, (6)4, b2 1 11° :122]° |, B Wb Y
o NU-M ....u'~ g
g 10 ::jﬁf;;fﬂ?g o= 18 ::14°]: andBl,
© i S
== 7)+srC 25)
tof e 3 (7) wi6: 1: 16], ©% : 1°: 5°]. The experimental results are
o [7;;39:28) - . : T ; Z\‘g shown in the plobf Fig. 6. Observe that, in case (1), where
Blur setting the TSF intervals are set to zero, our method reduces to LBP,

and the poor recognition accuracy is further testimony to the
Fig. 5. Effect of increasing thilur. (Refer to the text for blur settings alongfact that the blur, unless accounted for, will cause classical FR
theX-axis.) algorithms to fail. Wenote that the recognition rates are

1) Effect of Increasing the BlufWe now examine our
al gorithmés performance as the extent of the blur is in
The gallery, as before, is tHe folder. We select random
transformations from the following nine sets of intervals to
blur the images in thbj folder and generate the probes. The
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105 : ' : subspace, can be generated using the Lambertian
90 L
a0l v reflectance model as
ﬁ—;‘l I fi(r,0) =" 1c) maxn(r,0)"s,0) (15) where and
5 59 - n are the albedo and the surface normal, respectively, at
;‘; :3 i the pixel locatior(r,c), andsis the illumination direction.
© L Following [19], we approximate
10§ n . f T
o Algorithm 2 MOBIL: Motion Blur and Illumination-Robust
1 5 3 2 5 3 7 Face Recognition
Blur setting

Input: Blurred and differently illuminated probe image g, and

Fig. 6. Effect of underestimating or overestimating the TSF search intervals. @ S€t of gallery images fi,,m =1,2,..., M.
(Refer to the text for blur settings along thexis.) Output: Identity of the probe image.

I: For each gallery image f,,,, obtain the nine basis images
foniri=1,2,...,0.
fairly stable even when the TSF search intervals are chosen2oFor each gallery image f,,, find the optimal TSF hr_, and
be much larger thathe true TSF intervals (cases-@)) i.e., illumination coefficients a;,, ; by solving equation (16).
our algorithm picks the correct TSF even when the search Transform (blur and re-illuminate) the gallery images
space is large. It can thus be concluded that it is not advisablefm using the computed hr,, and a;, ; and extract LBP

to underestimate the TSF search intervals. features.
4: Compare the LBP features of the probe image g with those
IV. FACE RECOGNITIONACROSSBLUR, ILLUMINATIO N, of the transformed gallery images and find the closest
AND POSE match.

Poor illumination is often an accompanying feature in
blurred images because larger exposure times are needed tot
compensate for the lack of light which increases the chances
of camera shake. Pose variation is another challenge for
realizing thetrue potential of face recognition systems in
practice. This section is devoted to handling the combined”
effects of blur, illumination and pose.

he albedo with a frontal, sharp, and welluminated
gallery image captured under diffuse lightiagd use the
average (generic) 3D face normals from [33]rfor

In [19], it has been shown that for the case of space
invariant blur, the set of all images under varying
illumination and blur forms a kionvex set, i.e., if we fix
either the blur or thedlumination, the resulting subset is
convex. As discussed in Section Ill, according to the
motion blur model for faces, the set of mibtionblurred

A. Handling lllumination Variations
To handle illumination variations, we modify our basic
blur-robust algorihm (NU-MOB) by judiciously utilizing the images obtained by blurring a focused gallery image
following two results: using the TSF model also forms a convex set. Therefore
wln the seminal work of [20], it has been shown that if the the result in [19] extends equally well to our situation i.e.,
human face is modeled as a convex Lambertian surface, the set of all images under varying illumination and-non
then there exists a configuration of nine light source uniform motion blur also forms adobnvex set.
directions such that the subspace formed by the imageBased on these two results, we develop our-urdform
taken under these nine sources &dfective for motion blur and illumination (MBIL)-robust face
recognizing faces under a wide range of lightingcognition algorithm. The solution that we seek can be posed

conditions. Using this aBtdninihezatienaf the félléWihg dodd functidrf givénby o f
lighting positions, an imagé of a person under any 9

illumination condition can be written as . 2
° [hTmE ®i] =argmid| W(g b iAmihT)l12 + A ht|| 1

hTZ ih i=
f=hf (14) T i=1
i=1 subject tchrx0 (16)

where Miji = 12..9 ae the corresponding linear we adopt the alternating minimization strategy outlined in
coefficients. Thefis, which form a basis for this 9D[19] to solve the above equation. But note that, unlike in [19],
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we need to solve for the TSF in the motion estimation stéjpe illumination is fixed and we are solving for the blur in this
We first obtain the nine basis imadgs,i = 1,2,...9 for each step. Following this, we blur each of the basis images using
gallery imagef,,m = 1,2,..., M. Next, for each gallery imagethe estimated TSFry, before proceeding to the second
fn, we estimate the optimal TSRy, and illumination iteration. Note that the matrix, in the second and
coefficientsh ,; by solving equation (16). To determine théubsequent iterationis built from the blurred basis images.
identity of the probe, we transform (reblur andleninate) TO summarize, in one step, we minimize ovgrkeepinghrm,
each 6the gallery images, using the estimated TSF,and fixed and in the other, we minimize ovér, keeping" m,
the illumination coefficientd ,;, compute the LBP featuresfixed, and iterate till convergence. An example from the PIE
from these transformed gallery images and compare them wigiaset illustrating this sequendeoperations is shown in Fig.
those from the probey to find the closest match. See/. The optimization problem is convex with respect to blur
Algorithm 2. and illumination considered individually. Therefore, we are
We now elabmate on the two steps involved in ouguaranteed to converge to at least a local minima by
AM algorithm. For any gallery imag, in the first iteration, altérnately optimizing ovehm, and ";. Another exarple
we assume the blur to be an impulse (i.e., no blur) afi@m our real dataset depicting the gallery, the probe, and the

estimate the nine illumination coefficierits,; by solving the "€blurred and relit gallery is also shown in Fig. 7.

linear least squares proble%’n: Lmh m, whereL ,is a matrix

B. Handling Pose Variations
whose

Most face recognition algorithms are robust to small
variations in posel} 15°) [25], but the drop in penfmance is
severe for greater yaw and pitch angles. In our experiments,
we found this to be true of our MOBIL algorithm also. The
reason behind this drop in accuracy is that istrhject
variations caused by rotations are often larger than-inter
subject diferences. Clearly, there is no overstating the

© d (@) , t 1
3 , (@) (b) (©
A
: Fig. 8. Example images of a subject from the PIE database under new poses.
i 1 ; The images in (a) and (b) are synthesized from the frontal gallery image using
A the average face depthmap shown in (c).
® (8 (h)

formidable nature of therpblem at hand recognizing faces
I o tom the PIE dataset illustrating the alf t_across blur, illumination and pose. To this end, we next
1g. /. An example Image from e ataset Illustrating e alternati . . . .
minimization algorithm is shown in the first two rows. (a) Gallery, (b) probeB,EFOpose our MOBILAP _algonthm which, 93'”9 L eStIr_nate of
(c) relit gallery image, (d) reblurred and relit gallery imaged &) a plot of the pose, matches the incoming probe with a synthesized non
the LBP cost versus iterations. Another example from our real datasefrigntal gallery image. To the best of the auth s 6 knowl
shown in row 3. (f) Gallery, (g) probe, (h) reblurred and relit gallery image. this is the first ever effort to even attempt this compounded
scenario.
) ) o ) Owing to the robustness of face recognition algorithms to
nine columns contain the basis imadgs corresponding to small pose variations of upt@l5°, a certain level of
t:e su:)jectm Iexmograph!cﬂy ordered as yector_s, ar’f’dn:. guantization of the kulepth rotations is possible [25 recent
["miZ RoZ PRI 2are  its  corresponding  illumination o [34] that unifies face detection, pose estimation, and
coefficients. Now, we create a new relit gallery image frogngmark localization has also adopted this 15° discretization.
the basis images using the estimated illumination coefficiers;g method, suited for focused, cluttered images, detects the
"mi. This completes the first step of thiteenation wherein t:6(s) and returns a quantized estimate (bet&86f to 90°
we fixed the blur and est|-mated thg |IIu.m|nat|0n._ Next, We/ery 15°) of the pose(s). We use this technique to obtain an
build Ar, using warped versions of this relit gallery image andimate of the pose of the blurred probe image. We note from
estimate the TSFm by solving equation (13). Observe thal,; experiments that there are errors in landmark localization
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due to blur, and the method in [34] can then yield inateurMOB| LAP&6s results on the Labe!
pose estimates with the true pose being returned only alaathset (which is a publicly available real dataset) using the
45555% of the time. However, it almost always returns anUnsuper vi sedd protocol . ofWe al
estimate which is withint15° of the true pose. Using thisMOBILAP on our own real dataset captured using a handheld
estimate, we synthesize, from each frontal gallery, the imagmera that contains significant blur, illumination and pose

of the subjectinder the new pose with the help of the averagariations, in addition to small occlusions and changes in
depthmap used in Section A, (See Fig. 8.) These facial expressions.

synthesized poses now form the new gallery set. Although the

shape of each subjectdos f&ReognfiéhWAcross®lurand fflumiddaiont he gener i
depthmap, the algorithm retains its slitipy and the increase

) wational f due to this step | | inimal. T We first un our MOBIL algorithm on thdlum subset of
n compultational ime due to this step 1S only minimal. htﬁe PIE database which consists of images of 68 individuals
nine illumination basis images are estimated as before usi

. . : UNder different illumination conditions. We use faces with a
(15) but with * now being the new synthesized pose andfrontal pose ¢;7) and frontal illumination €,;) as our gallery.
being the surface normals recomputed from the rotatef, probe dataset, wdi is also in the frontal pose), is
depthmap. Note that the motion blur model for faces discus%a%\qded into two ,categoriesl) Good lllumination ,(GI)

in Segtion 11 applies.ever? in the even.t of a pose change. éﬂwisting of subseths, for fos foo f12aNd foo (6 different
overview of the algorithm is presented in Algorithm 3. illumination conditions) and 2) Bad Illlumination (BI)

consisting of subseths, fio, f13, fis, figandf,; (6 different

illumination conditions). Next, we blur all the probe images

In Section VA, we first demonstrate the effectiveness Qfsing the five different blur settings, and the transformation
our MOBIL algorithm (of Section IV) in recognizing facesjntervals discussed in Section-(.

across blur and illumination using two publicly available 1 perform recognition using MOBIL, we first compute the
databases PIE [35] and Extended Yale B [36]. Using the Plfine jiiumination basis images for each gallery image as

dataset, we further go on to show, in SectioB,\how our yegcriped in Section IV. For comparison, we used the methods
MOBILAP algorithm can hadle even pose variations. Notes Nos. 1(b), 2, through 9 mentioned in Table I. Since [17]
that, as before, we blur the images synthetically to genergigs not have an explicit formulation to handle variations in
the probes as these two databases do not contain motion %‘rﬁting, we followed theapproach taken in their paper and
Therefqre, these experiments (and the ones already disc'u§|§§[ggram equalized both the gallery and the probe images
in Section II+C) are synthetic or quaseal because the blur iSpetore executing their algorithm. The recognition results are
synthetically introduced. In Section®, we report provided in Table Ill. It is clearly evident that MOBIL
Algorithm 3 MOBILAP: Motion Blur, IMlumination and outperforms the Comparison techniques (|n¢|ngUMOB
Pose-Robust Face Recognition which does not explicitly handle illumination) for all blur
Input: Blurred and differently illuminated probe image g settings.
under a different pose, and a set of gallery images
fm,m=1,2,..., M.

Output: Identity of the probe image.

1: Obtain an estimate of the pose of the blurred probe image
using the method in [34].
For each gallery image fy,, synthesize the new pose foyn
based on the above estimate.
3: For each synthesized gallery image fgyn,. obtain the

nine basis images fiy,, ;,¢ = 1,2,...,9 using normals

recomputed from the rotated depthmap.
4: For each synthesized gallery image fsy, . find the optimal

TSF hy_, and illumination coefficients «,, ; by solving

equation (16).
5: Transform (blur and re-illuminate) the synthesized gallery

images fgyn,, using the computed hy  and «,,; and

extract LBP features.
6: Compare the LBP features of the probe image g with those

of the transformed gallery images and find the closest

match.

V. EXPERIMENTS

24
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