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ABSTRACT 

The analysis of solutions for Volterra and Fredholm integral equations is a pivotal area of 

study within the broader field of integral equations, which finds applications across various 

disciplines such as physics, engineering, and mathematical biology. Volterra integral 

equations, characterized by their lower integration limit being variable, often model systems 

with memory effects, such as population dynamics and viscoelastic materials. Conversely, 

Fredholm integral equations have fixed integration limits and are instrumental in solving 

problems related to potential theory, quantum mechanics, and boundary value problems. The 

methods for solving these integral equations include analytical approaches like the method of 

successive approximations and the Neumann series, as well as numerical techniques such as 

quadrature methods, iterative methods, and spline approximations. The primary challenge in 

analyzing these equations lies in ensuring the existence and uniqueness of solutions, as well as 

in developing stable and efficient computational algorithms. By exploring both theoretical and 

practical aspects, researchers aim to derive conditions under which solutions exist and 

converge, thereby advancing our understanding and capability to address complex real-world 

problems modeled by these integral equations. 
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I. INTRODUCTION 

Analyzing the solutions of Volterra and Fredholm integral equations constitutes a fundamental 

pursuit in mathematical analysis, with far-reaching implications across diverse scientific 

domains. Integral equations serve as powerful tools for modeling a wide array of phenomena 

characterized by continuous interactions, memory effects, and boundary conditions. Volterra 

integral equations, named after the Italian mathematician Vito Volterra, encompass systems 

where the lower limit of integration is variable. They find applications in various fields such as 

population dynamics, biology, economics, and physics, particularly in problems involving 

systems with memory or delay effects. Fredholm integral equations, on the other hand, named 

after the Swedish mathematician Erik Ivar Fredholm, have fixed integration limits and are often 

utilized to describe problems related to potential theory, quantum mechanics, and boundary 

value problems. The study of these integral equations involves understanding their properties, 
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existence, uniqueness, and behavior of solutions, as well as developing efficient numerical 

algorithms for their solution. This comprehensive investigation spans both theoretical and 

computational realms, delving into the intricacies of functional analysis, operator theory, and 

numerical methods. By unraveling the complexities inherent in these equations, researchers 

endeavor to unveil the underlying principles governing real-world phenomena and to devise 

effective strategies for tackling a myriad of scientific and engineering challenges. Thus, the 

analysis of Volterra and Fredholm integral equations stands at the nexus of theoretical 

exploration and practical application, driving innovation and progress in various scientific 

disciplines. 

II. REVIEW OF LITERATURE 

Aziz, Imran et Al., (2013) wavelet Fredholm integral equations Volterra integral equations 

First-order integro-differential equations Second-order integro-differential equations Fourth-

order integro-differential equations abstract In this paper, a novel technique is being formulated 

for the numerical solution of integral equations (IEs) as well as integro-differential equations 

(IDEs) of first and higher orders. The present approach is an improved form of the Haar wavelet 

methods (Aziz and Siraj-ul-Islam, 2013, Siraj-ul-Islam et al., 2013). The proposed 

modifications resulted in computational efficiency and simple applicability of the earlier 

methods (Aziz and Siraj-ul-Islam, 2013, Siraj-ul-Islam et al., 2013). In addition to this, the new 

approach is being extended from IDEs of first order to IDEs of higher orders with initial-and 

boundary-conditions. Unlike the methods (Aziz and Siraj-ul-Islam, 2013, Siraj-ul-Islam et al., 

2013) (where the kernel function is being approximated by two-dimensional Haar wavelet), the 

kernel function in the present case is being approximated by one-dimensional Haar wavelet. 

The modified approach is easily extendable to higher order IDEs. Numerical examples are 

being included to show the accuracy and efficiency of the new method. 

Borhan, J. et al., (2023) This research work demonstrates an approach to solve nonlinear 

evolution equations via the generalized \(\left(G{\prime }/G\right)\)-expansion method which 

is an advantageous mathematical tool for establishing abundant solutions of these types of 

nonlinear evolution equations. Here, we select the \(\left(1+1\right)\)-dimensional integro-

differential Ito equation and \(\left(2+1\right)\)-dimensional integro-differential Sawda-Kotera 

equation to extract the closed traveling wave solutions by using the mentioned method. In 

applied Mathematics, mathematical Physics, engineering science as well as real time 

application fields have enormous application of these type of equations. The new traveling 

wave solutions derived by this method are involving hyperbolic function, trigonometric 

function and rational function. This method is direct, efficient, convenient and powerful to 

solve other nonlinear evolution equations. Moreover, the features of the solutions are illustrated 

by some figures. 

Uwaheren, Ohigweren Airenoni et al., (2021) This paper deals with the solution of Fractional 

Integro-differential Equations of Fredholm type using Legendre Galerkin Method. The concept 

of Legendre Galerkin Method was implemented on some examples of fractional integro-

differential equations of Fredholm type to illustrate the practicability of the method. Fractional 
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derivatives of Caputo sense were used throughout the paper. The results obtained show that the 

method is reliable and accurate for the kind of problems considered when compared to the 

exact solutions. 

Ishak, Fuziyah et al., (2019) Fuzzy differential equations (FDEs) play important roles in 

modeling dynamic systems in science, economics and engineering. The modeling roles are 

important because most problems in nature are indistinct and uncertain. Numerical methods 

are needed to solve FDEs since it is difficult to obtain exact solutions. Many approaches have 

been studied and explored by previous researchers to solve FDEs numerically. Most FDEs are 

solved by adapting numerical solutions of ordinary differential equations. In this study, we 

propose the extended Trapezoidal method to solve first order initial value problems of FDEs. 

The computed results are compared to that of Euler and Trapezoidal methods in terms of errors 

in order to test the accuracy and validity of the proposed method. The results shown that the 

extended Trapezoidal method is more accurate in terms of absolute error. Since the extended 

Trapezoidal method has shown to be an efficient method to solve FDEs, this brings an idea for 

future researchers to explore and improve the existing numerical methods for solving more 

general FDEs. 

Singh, Somveer et al., (2017) In this paper, we propose and analyze an efficient matrix method 

based on shifted Legendre polynomials for the solution of non-linear volterra singular partial 

integro-differential equations(PIDEs). The operational matrices of integration, differentiation 

and product are used to reduce the solution of volterra singular PIDEs to the system of non-

linear algebraic equations. Some useful results concerning the convergence and error estimates 

associated to the suggested scheme are presented. Illustrative examples are provided to show 

the effectiveness and accuracy of proposed numerical method. 

Brunner, Hermann. (2018). The aim of this paper is to describe the current state of the 

numerical analysis and the computational solution of non-standard integro-differential 

equations of Volterra and Fredholm types that arise in various applications. In order to do so, 

we first give a brief review of recent results concerning the numerical analysis of standard 

(ordinary and partial) Volterra and Fredholm integro-differential equations, with the focus 

being on collocation and (continuous and discontinuous) Galerkin methods. In the second part 

of the paper we look at the extension of these results to various classes of non-standard integro-

differential equations type that arise as mathematical models in applications. We shall see that 

in addition to numerous open problems in the numerical analysis of such equations, many 

challenges in the computational solution of non-standard Volterra and Fredholm integro-

differential equations are waiting to be addressed. 

III. VOLTERRA INTEGRAL EQUATION 

Within the scope of this section, we will be discussing non-homogeneous Volterra integral 

equations of the second derivative of the form. 
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In this equation, the variables a and x represent the limits of integration, λ corresponds to a 

constant parameter, and K(x, t) is referred to as the kernel of the integral equation. This kernel 

is a function of two variables, x and t. Under the integral sign, the function u(x) that will be 

calculated appears, and it also appears within the integral sign and outside the integral sign. In 

addition, it appears outside the integral sign. It is assumed that the functions f(x) and K(x, t) 

are already determined. 

The starting value issue is the source of the Volterra integral equations. It is well-known that 

many scientific domains produce linear and non-linear Volterra integral equations. Some 

examples include semi-conductor devices, epidemic spread, and population dynamics. Volterra 

began experimenting with integral equations in 1884 and dove headfirst into his studies in 

1896. In 1888, du Bois-Reymond bestowed the term "integral equation" upon the concept. The 

term Volterra integral equation, however, was initially used by Lalesco in 1908. Abel thought 

about the challenge of finding the equation of a vertical plane curve. The time it takes for a 

mass point to fall to the horizontal from a specific positive height along this curve is a function 

of the height that is defined in this issue. 

IV. FREDHOLM INTEGRAL EQUATION 

A wide variety of scientific contexts give rise to Fredholm integral equations, including those 

arising from boundary value issues. The contributions of Erik Ivar Fredholm (1866–1927) to 

spectral theory and integral equations are what have made him most famous. The Swedish 

mathematician Fredholm laid the groundwork for operator theory with his seminal work in 

integral equation theory and his publication in Acta Mathematica. In an integral equation, the 

unknown function u(x) takes on an integral form. A common form for general integral 

equations in u(x) is 

      (3.2.1) 

The constant parameters λ and the function K(x, t) which takes two variables x and t and is 

known as the kernel of the integral equation are included, together with the constant limits of 

integration a and b. The determined function u(x) is visible both within and outside the integral 

sign; it also appears under the sign. The functions K(x, t) and f(x) are predefined. 

Description of the Methods 

The Adomian Decomposition Method (ADM), the Modified Adomian Decomposition Method 

(MADM), the Variational iteration (VIM) Method, and the Homotopy Perturbation Method 
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(HPM) are just a few examples of the innovative approaches that have been working to improve 

upon previously established and effective strategies for Fredholm essential conditions. 

Adomian Decomposition Method(ADM) 

Using an infinite series, the unknown function u(x) may be defined using the Adomian 

decomposition approach. 

        (3.2.2) 

This often involves the repeated determination of the components un(x). A decomposition of 

the non-linear operator F(u) into an infinite series of polynomials may be expressed as 

        (3.2.3) 

where An are defined as the so-called Adomian polynomials of u0, u1,..., un, 

    (3.2.4) 

or equivalently 

    (3.2.5) 

The fact that certain techniques may be used to construct these polynomials for any class of 

nonlinearity is now widely recognized. Just recently, Wazwaz came out with a different way 

to build Adomian polynomials. 

     

The components u0, u1, u2, · · · are usually determined recursively by 
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     (3.2.6) 

Then,  as the approximate solution. 

Modified Adomian Decomposition Method (MADM) 

Equation (3.2.9) using the Fredholm integral is often solved using the Adomian decomposition 

method. 

        (3.2.7) 

where An, n ≥ 0 are the Adomian polynomials determined formally as follows 

      (3.2.8) 

The solution of u is represented by the following series using the conventional decomposition 

approach. 

        (3.2.9) 

By substituting (3.2.7) and (3.2.9) in eq (3.2.1) we have 

 

Wazwaz spoke about the MADM. Partially dividing the function f(x) into f1(x) and f2(x) is the 

underlying assumption of this method. Assuming this to be true, we decided to 

       (3.2.10) 

When the function f is multi-participant and may be split into two components, we use this 

decomposition. Here, f is often a polynomial plus a transcendental or trigonometric function 

added together. Making the right decision for the function f1(x) is critical.  
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We choose f1(x) as one term of f or, if feasible, a number of terms, and f2(x) as the remainder 

of f so that the procedure may be applied gradually. With the help of the MADM, we may 

rewrite equation (3.2.1) as shown in (3.2.10). 

     

The components u0, u1, u2, · · · are usually determined recursively by 

     (3.2.11) 

Then, as the approximate solution. 

V. CONCLUSION 

The analysis of Volterra and Fredholm integral equations is a multifaceted endeavor essential 

for understanding and solving a wide range of problems across numerous scientific disciplines. 

Through theoretical exploration and computational techniques, researchers unravel the 

intricacies of these equations, shedding light on fundamental principles governing real-world 

phenomena. By bridging theory and application, this research facilitates advancements in fields 

as diverse as physics, biology, engineering, and economics, offering solutions to complex 

challenges and driving innovation forward. Ultimately, the study of Volterra and Fredholm 

integral equations stands as a testament to the power of mathematical analysis in shaping our 

understanding of the world and advancing scientific knowledge. 
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