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ABSTRACT 

It is common practice to train state-of-the-art 

anomalous sound detection (ASD) systems 

by learning an embedding space using an 

auxiliary classification task. This allows the 

system to learn noise-tolerant embeddings 

that disregard off-target sound occurrences; 

however, it does need the usage of explicitly 

annotated meta information for class labels. 

But the embeddings become less useful and 

the ASD performance suffers as the 

classification challenge gets easier. Using 

self-supervised learning (SSL) is one way to 

fix this. A straightforward SSL method for 

ASD, feature exchange (FeatEx), is 

suggested in this paper. Also included are 

comparisons and combinations with current 

SSL techniques, as well as FeatEx itself.  

The primary outcome is a new benchmark 

performance for the DCASE2023 ASD 

dataset that far surpasses all previous 

reported findings on this dataset.  

Machine listening, self-supervised learning, 

domain generalization, and anomalous 

sound detection are some of the index terms.  

 

1. INTRODUCTION 

 

Unlike supervised learning, self-supervised 

learning (SSL) [1] can function without 

class labels that have been explicitly 

annotated. Rather, data is enhanced in many 

strategically selected ways, each of which 

defines a new artificially constructed class, 

and a model is trained to distinguish 

between these classes. Predicting the newly 

added artificial classes accurately requires 

the model to comprehend the data structure, 

which is the underlying assumption. SSL is 

an unsupervised learning method that has 

been used to learn representations of speech 

or general purpose audio from big datasets 

of unlabeled data [2, 3].  

Anomaly sound detection (ASD) has also 

utilized SSL:  

In [5], new classes are generated by 

combining pitch-shifting and time-

stretching. As pseudo-anomalous classes, [6] 

creates target sounds using mixup [7] and 

then employs linear combinations of those 

sounds. One SSL method that combines 

first- and second-order statistics of time-

frequency representations to generate new 

classes is Statistics Exchange (StatEx) [8]. 

To pre-train autoencoders, a variant of 

variance-invariance-covariance 

regularization, known as domain 

generalization mixup, is employed in [9]. It 

should be noted that SSL is used by certain 

ASD works to refer to supervised learning 

of embeddings with supplementary 

classification tasks [11, 12]. We shall use 

two distinct terminologies here because SSL 

does not necessitate any human annotations 
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while classification jobs do. As the model 

learns to pay close attention to the target 

sounds, class labels alone are proven to be 

highly effective for detecting anomalous 

sounds in noisy environments [13]. In an 

acoustic setting without class labels, the 

presence of numerous non-target sounds is 

far more noticeable than the little variations 

of the target sounds that must be recognized 

to identify unusual sounds. The problem is 

that the discriminating of classes yields 

fewer useful embeddings when the available 

classes are less comparable to one another. 

Using SSL is a good strategy in these 

situations as well, as it increases the amount 

of data gathered and should, in theory, boost 

ASD performance. The objective of this 

project is to explore various methods of 

implementing SSL for ASD. The following 

contributions are being made: We begin by 

taking a look at mixup and StatEx, two of 

the current SSL methods for ASD. The 

second proposal is a hybrid of the first two 

SSL methods plus a new one for ASD called 

feature exchange (FeatEx). The suggested 

method outperforms a baseline system that 

does not use SSL, according to experimental 

assessments performed on the DCASE2022 

and DCASE2023 ASD datasets. 

Consequently, using the DCASE2023 ASD 

dataset1, a new state-of-the-art performance 

is achieved, surpassing all previously 

reported ASD findings by a wide margin.  

 

2. STATE-OF-THE-ART BASELINE 

SYSTEM 

 

The ASD system from our previous work 

[15] serves as a baseline system for this 

work. It is trained in a supervised manner 

utilizing an auxiliary classification job. Our 

objective is to enhance the system's 

performance by utilizing SSL techniques. In 

the DCASE2023 Challenge, this system 

came in at #4 [14], and the winner team [16] 

improved upon it by including an attention 

mechanism into the embedding model. 

Thus, using the ASD system as a baseline 

demonstrates that it is capable of being 

regarded as state-of-the-art. Figure 1 

provides a high-level picture of the basic 

system. Using all accessible meta 

information, such as machine kinds, 

machine IDs, and attribute information, the 

system learns discriminative embeddings. 

For this purpose, a single embedding is 

obtained by merging the outputs of two 

convolutional sub-networks. To guarantee 

the best potential frequency resolution, one 

subnetwork uses the complete magnitude 

frequency spectrum as an input 

representation. In order to differentiate the 

two subnetworks' input representations, one 

employs magnitude spectrograms and 

subtracts the temporal mean to eliminate 

static frequency information. Using a batch 

size of 64 and reducing the angular margin 

loss sub-cluster AdaCos [17] with 16 sub-

clusters, the neural network is trained for 10 

epochs. The ASD performance is enhanced 

by not using bias terms in any network layer 

and by randomly initializing the cluster 

centers and not adjusting them during 

training. We don't employ any additional 

data augmentation techniques other than 

mixup. In the background, k-means is used 

to refine the embeddings that were produced 

from the source domain's normal training 

samples. This process requires a large 

number of training samples.  
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We have availability. Anomaly scores are 

determined by finding the smallest cosine 

distance between these means and all 

samples of the target domain. This distance 

is calculated for domains that are different 

from the target domain and for which there 

are few training samples available. Refer to 

[15] for further information on this baseline 

system. 

 

3.SELF-SUPERVISED LEARNING 

APPROACHES 

 

Specifically, this part examines mixup [7] 

and StatEx [8], two SSL methods for ASD 

system training. In addition, a third method, 

FeatEx, is presented and explained in depth. 

Lastly, a unified SSL strategy is introduced, 

utilizing all three previously mentioned 

methods in tandem. 3.1. Collage  

Mixup[7] is a popular data augmentation 

method for ASD[14,16, 18–20] because it 

employs linear interpolations between two 

training samples and the related category 

labels. Mixup is applied by setting two 

randomly selected training samples x1, x2, 

together with their matching categorical 

class labels y1, y2 ∈ [0, 1]Nclasses, where 

Nclasses is the number of classes.  

 

working with a random mixing coefficient λ 
that is within the range of 0 to 1. While 

mixup doesn't add any new classes to the 

data, it does extend the supervised training 

objective to include predicting the mixing 

coefficient along with the original classes. 

This makes it a type of SSL that requires 

class labels, even though mixup itself 

doesn't add any new classes.  

Using a method similar to the one suggested 

in [5], authors in [8, 14] and elsewhere 

created new pseudo-anomalous classes by 

assigning mixed-up samples the same 

treatment as non-mixed samples inside other 

classes. We found that this method actually 

hurt performance on some machine types, 

rather than helping ASD when compared to 

consistently applying mixup. Another option 

is to use mixup as a fully self-supervised 

method, in which case you just need to 

forecast the mixing coefficient and disregard 

the class labels. To train the system to focus 

on the machine sounds of interest while 

ignoring background noise and other 

nontarget events, it is very advantageous to 

use all available meta information for 

classification when dealing with noisy audio 

data [13]. In this study, we trained the 

baseline system with a 100% chance of 

using mixup and a 50% chance of using any 

other SSL technique.  

3.2. Data sharing In StatEx [8], two training 

samples x1, x2 are compared along the 

frequency or time dimension using first- and 

second-order statistics of the time-frequency 

representations. The goal is to generate new 

classes of pseudo-anomalies artificially. 
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From a mathematical perspective, this is 

equivalent to creating a new sample xnew ∈ 

RT×F by adjusting  

 

in which two randomly selected training 

samples' time-frequency representations are 

denoted by x1, x2 ∈ RT×F. In the time or 

frequency dimension, μ1, μ2 represent the 
first-order statistics of these samples, while 

σ1, σ2 stand for the second-order statistics 

in the same dimension. A new class is 

formed for every conceivable combination 

of classes, which adds N2 classes, a 

quadratic term, to the initial number of 

classes Nclasses ∈ N. A StatEx variation 

with the following changes was utilized in 

this work: When calculating statistics, we 

always utilize the full frequency band and 

all time steps for simplicity's sake, even 

though the original specification included 

subbands [8]. Third, using the data from the 

other sample x2 and the original sample x1, 

we train the model to predict their classes. 

The labels y1 and y2 from the category class 

are joined together to accomplish this:  

 

inside the set of N classes, where 0 is a 

value between 0 and 1, inclusive. Therefore, 

the number of parameters does not explode, 

even though the number of classes is tripled. 

This is because the number of cluster centers 

rises proportionately with the number of 

classes. In addition, this makes it easy to 

combine with other data augmentation 

methods, like mixup, that assign many 

classes to each sample. The results of the 

ASD are improved by subtracting the 

temporal mean from the spectrograms, as 

demonstrated in [15]. This paper's version, 

then, solely makes use of temporal StatEx, 

which we applied to the frequency axis. In 

addition, the basic system makes use of two 

feature branches. Therefore, the spectrogram 

representations have only been subjected to 

temporal StatEx. Across this project, we 

utilized mixup and applied StatEx during 

training with a 50% probability. The new 

label of the training sample xnew = x1 is set 

to in the event that StatEx is not used.  

 

Furthermore, for the newly added classes, 

we utilized trainable cluster centers. The 

results of the ablation trials discussed in 

paragraph 4.3 further support these specific 

decisions.  

 

3.3. Feature exchange 

To train look, listen, and learn (L3) 

embeddings [21–23], an audio and video 

subnetwork is used to predict if two one-

second audio segments and video frames 

belong together. Using these pre-trained 

embeddings does not improve ASD 

performance compared to explicitly building 

an embedding model, as demonstrated 

empirically in [24]. Compared to supervised 
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embeddings, self-supervised embeddings 

like L3-embeddings seem to perform better 

when evaluating numerous pre-trained 

embeddings. This calls for the creation of an 

equivalent SSL method for learning 

embeddings from audio data alone.  

We can utilize a similar SSL method, which 

we'll name feature exchange (FeatEx), as the 

baseline system also has two sub-networks 

that employ distinct input feature 

representations.  

Given two random training samples x1 and 

x2, let e1 = (e11, e21) and e2 = (e12, e22) ∈ 

R2D with D = 128 represent the combined 

embeddings of the two sub-networks, and let 

y1, y2 stand for the associated categorical 

class labels. After that, specify a new 

embedding and what it will be called by 

changing  

 

The number of original classes is 

represented by Nclasses, where N is an 

integer between zero and one. As a result, 

there are three times as many classes as in 

the StatEx variant. Applying FeatEx also 

requires the network to learn if the sub-

networks' embeddings belong together, 

which leads to the collection of more 

information.  

All of this work has made use of a mixup, a 

50% chance of using FeatEx during training, 

and trainable cluster centers for the newly 

added classes.  

34. Losses that are both monitored and self-

supervised combined  

It was demonstrated in [15] that the ASD 

performance that follows from training 

without adjusting randomly started cluster 

centers is superior.  

When we tested the SSL methods with 

trainable cluster centers, we discovered that 

they worked much better. We utilized the 

normal supervised loss of the baseline 

system with non-trainable cluster centers as 

an equally weighted loss to further guarantee 

that only the SSL loss's cluster centers 

pertaining to the initial classes are non-

trainable. It is also possible to view this as a 

type of disentangled learning [25] since the 

classes introduced by the SSL techniques are 

subdividing the original classes. Since no 

two SSL methods are identical, we also 

suggest combining the conventional loss 

with StatEx and FeatEx into a single loss 

function. So, for a sample x with a 

categorical label y, the total loss Ltotal(x, y) 

equals  

xnew and ynew are defined by applying all 

the SSL techniques in sequential order as 

mentioned in the preceding sections, and L 

is the categorical crossentropy. The outcome 

is a ninefold rise in the total number of 

courses. Hereafter, this method is referred to 

as the suggested strategy.  

 

4. EXPERIMENTAL RESULTS 

4.1. Datasets 

 

The studies performed in this study make 

use of the DCASE2022 [26] and 

DCASE2023 ASD datasets [27]. Using 

recordings of different types of machine 

noises from ToyAdmos2 [28] and MIMII-

DG [29], the two datasets are created for use 

in semi-supervised ASD for machine 

condition monitoring. When it comes to 

training, all that's accessible is regular 
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sounds plus some extra meta data called 

attribute information, which includes things 

like the types of machines and their 

parameter values. In addition, the two 

datasets are structured for domain 

generalization, so they include information 

from two domains: one with 1000 training 

samples per machine ID in the source 

domain, and the other with 10 samples in the 

target domain, which differs in some way by 

adjusting the target machine's parameters or 

the background noise. Regardless of the 

domain a sample belongs to, the aim is to 

distinguish between normal and anomalous 

samples.  

A development set and an evaluation set are 

created from the two datasets, with the 

former including a training subset of 

normally distributed data and the latter 

including both normally distributed and 

abnormally distributed samples. With three 

unique machine identifiers in the 

development set and three more in the 

evaluation set, the DCASE2022 ASD 

dataset contains recordings from seven 

distinct machine kinds. There are fourteen 

distinct kinds of machines included in the 

DCASE2023 ASD dataset. Each machine 

type in the evaluation and development sets 

has its own unique identifier, and these sets 

are mutually exclusive. Because of this, we 

may use SSL for ASD system training as 

well, as the classification job is considerably 

simpler on the DCASE2023 dataset than on 

the DCASE2022. This is because learning 

informative embeddings by the solution of 

an auxiliary classification task is 

significantly more challenging on the 

DCASE2023 dataset. 4.2. A Review of SSL 

Methods  

The first experiment compares the baseline 

performance achieved without extra SSL 

losses against that of other SSL techniques.  

Table 1 and the notes that follow contain the 

findings.  

 

is feasible: To start, the suggested FeatEx 

loss outperforms the StatEx loss on both 

datasets by a wide margin. Also, for most 

dataset splits, using only the FeatEx loss 

improves performance marginally over the 

baseline system, but using only the StatEx 

loss significantly worsens performance 

compared to the baseline system. On the 

other hand, taking a combination of the 

normal loss and one of the SSL losses yields 

better results than using either loss alone, 

particularly on the DCASE2023 dataset. As 

mentioned earlier, the most probable 

explanation is because the DCASE2022 

dataset has many more machine types, 

making the classification process easier. As 

a result, the embeddings are less informative 

and less sensitive to anomalies.  

In order to train the system to learn 

nontrivial mappings for each class, which 

leads to more informative embeddings and 

the ability to detect small data outliers, SSL 

is necessary as a regularization. Finally, it's 

clear that merging all SSL methods into one 

loss somewhat increases performance for 

some dataset splits but decreases 
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performance for others. The net benefit 

appears to outweigh the net cost, albeit by a 

little margin.  

Studying ablation (4.3) Three ablation tests 

on the DCASE2023 dataset have been 

carried out to demonstrate that the design 

choices of the suggested method optimize 

the ASD performance. To be more specific, 

we tested three different approaches to SSL 

loss calculation: 1) ignoring class labels, 2) 

utilizing non-trainable class centers, or 3) 

avoiding TNN and adding StatEx to the 

temporal axis to see if speeded up 

performance. Table 2 shows the results 

compared to the original ones in Table 1, 

and it's clear that changing the suggested 

method in any of the three methods lowers 

ASD performance, particularly on the 

assessment set. This strengthens faith in the 

suggested SSL method's architecture.  

4.4. Evaluation in relation to other system 

publications The last test was comparing the 

suggested system to the 10 best entries in the 

DCASE2023 Challenge. For an equitable 

comparison, we utilized an ensemble that 

was generated by retraining the system five 

times and averaging all anomaly scores. 

Figure 2 displays the outcomes. We have 

achieved a new state-of-the-art performance 

with our suggested system, which 

significantly surpasses all previously 

reported systems. Take note that the system 

that came in fourth place [14] in the 

DCASE2023 Challenge is identical to the 

baseline system used in this study, and that 

the system that came in first place [16] is a 

tweaked version of this baseline system.  

 

5. CONCLUSION 

 

Application of SSL to ASD was explored in 

this study. So, we looked into mixup and 

StatEx and came up with a new SSL method 

for ASD called FeatEx. A single loss 

function was used to train an ASD system 

that was exposed to outliers, using all three 

techniques. Applying SSL to ASD yields 

excellent results, and testing on the 

DCASE2022 and DCASE2023 ASD 

datasets demonstrated that FeatEx works 

better than the current SSL methods. Thus, a 

new state-of-the-art performance was 

achieved on the DCASE2023 ASD dataset, 

far surpassing all previously published 

systems.  
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