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Abstract: A large-scale cloud data center needs to provide high service reliability and 
availability with low failure occurrence probability. However, current large-scale cloud data 
centers still face high failure rates due to many reasons such as hardware and software failures, 
which often result in task and job failures. Such failures can severely reduce the reliability of 
cloud services and also occupy huge amount of resources to recover the service from failures. 
Therefore, it is important to predict task or job failures before occurrence with high accuracy to 
avoid unexpected wastage. Many machine learning and deep learning based methods have been 
proposed for the task or job failure prediction by analyzing past system message logs and 
identifying the relationship between the data and the failures. In order to further improve the 
failure prediction accuracy of the previous machine learning and deep learning based methods, in 
this paper, we propose a failure prediction algorithm based on multi-layer Bidirectional Long 
Short Term Memory (Bi-LSTM) to identify task and job failures in the cloud. The goal of Bi-
LSTM prediction algorithm is to predict whether the tasks and jobs are failed or completed. The 
trace-driven experiments show that our algorithm outperforms other state-of-art prediction 
methods with 93% accuracy and 87% for task failure and job failures respectively. 

Index Terms: Cloud data centers and deep learning. 

INTRODUCTION 

Nowadays, cloud computing service has been wildly used because it provides high reliability, 
resource saving and also on-demand services. The cloud data centers include processors, 
memory units, disk drives, networking devices, and various types of sensors that support many 
applications (i.e., jobs) from users. The users can send requests such as store data and run 
applications to the cloud. Each cloud data center is composed with physical machines (PMs) and 
each PM can support a set of virtual machines (VMs). The tasks that are sent from users are 
processed in each VM. Such a large scale cloud data center can host hundreds of thousands of 
servers which often run tons of applications and receive work requests every second from users 
all over the world. A cloud data center with such heterogeneity and intensive workloads may 
sometimes be vulnerable to different types of failures (e.g., hardware, software, disk failures). 
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Take software failures as an example, Ya-hoo Inc. and Microsoft’s search engine, Bing, crashed 
for 20 mins in January 2015, which cost about $9000 per minute to reboot the system. Previous 
research found that hardware failure, especially disk failure, is a major contributing factor to the 
outages of cloud services. These many different types of failures will lead to the application 
running failures. Thus, accurate prediction for the occurrence of application failures beforehand 
can improve the efficiency of recovering the failure and application running.  

A job is comprised of one or more tasks, each of which is accompanied by a set of resource 
requirements. A job fails when one of its tasks fails. The previous works [3], [7]–[10] use 
statistical and machine learning approaches such as Hidden Semi-markov Model (HSMM) and 
Support Vector Machine (SVM) to predict the task and job failures in cloud data centers. They 
use CPU usage and memory usage, unmapped page cache, mean disk I/O time and disk usage as 
inputs and the task failure or job failure as the output. However, HSMM and SVM assume that 
all their inputs are stationary and independent of each other which are not true in the cloud data 
centers. Thus, they cannot handle the sequence data or high dimensional data, in which data in 
time points or different features may be dependent to each other. In the cloud data centers, the 
input features and noisy data are diverse in nature and have dependencies on the past events. 
Thus HSMM and SVM can’t handle the failure prediction in cloud data centers. 

LITERATURE REVIEW 

Mina Sedaghat et. al: In large scale data centers, a single fault can lead to correlated failures of 
several physical machines and the tasks running on them, simultaneously. Such correlated 
failures can severely damage the reliability of a service or a job. This paper models the impact of 
stochastic and correlated failures on job reliability in a data center. We focus on correlated 
failures caused by power outages or failures of network components, on jobs running multiple 
replicas of identical tasks [2]. We present a statistical reliability model and an approximation 
technique for computing a job's reliability in the presence of correlated failures. In addition, we 
address the problem of scheduling a job with reliability constraints. We formulate the scheduling 
problem as an optimization problem, with the aim being to achieve the desired reliability with 
the minimum number of extra tasks. We present a scheduling algorithm that approximates the 
minimum number of required tasks and a placement to achieve a desired job reliability. We study 
the efficiency of our algorithm using an analytical approach and by simulating a cluster with 
different failure sources and reliabilities. The results show that the algorithm can effectively 
approximate the minimum number of extra tasks required to achieve the job's reliability. 

Thanyalak Chalermarrewong et. al [3]: This paper proposes a framework for online failure 
prediction of data centers. A data center often has a high failure rate as it features a number of 
servers and components. Moreover, long running applications and intensive workloads are 
common in such facilities. Performance of the system depends on the availability of the 
machines, which can be easily compromised if failure cannot be handled gracefully. The main 
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idea of this paper is to create an effective prediction model focusing on hardware failure. 
Accurate prediction may enhance the overall system performance. In this work, we employ two 
methods, namely, ARMA (Auto Regressive Moving Average) and Fault Tree Analysis. 
Experiments were then performed on a simulated cluster built based on Simi's platform. The 
results show prediction accuracy of 97%, which is very high. We thus believe that our framework 
is practical and can be adapted to use in data centers in the future. 

Subrata Mitra et. al: With the explosion of data in applications all around us, erasure coded 
storage has emerged as an attractive alternative to replication because even with significantly 
lower storage overhead, they provide better reliability against data loss. Reed-Solomon code is 
the most widely used erasure code because it provides maximum reliability for a given storage 
overhead and is flexible in the choice of coding parameters that determine the achievable 
reliability. However, reconstruction time for unavailable data becomes prohibitively long mainly 
because of network bottlenecks. Some proposed solutions either use additional storage or limit 
the coding parameters that can be used. In this paper [4], we propose a novel distributed 
reconstruction technique, called Partial Parallel Repair (PPR), which divides the reconstruction 
operation to small partial operations and schedules them on multiple nodes already involved in 
the data reconstruction. Then a distributed protocol progressively combines these partial results 
to reconstruct the unavailable data blocks and this technique reduces the network pressure. 
Theoretically, our technique can complete the network transfer in ⌈(log2(k + 1))⌉ time, compared 
to k time needed for a (k, m) Reed-Solomon code. Our experiments show that PPR reduces 
repair time and degraded read time significantly. Moreover, our technique is compatible with 
existing erasure codes and does not require any additional storage overhead. We demonstrate this 
by overlaying PPR on top of two prior schemes, Local Reconstruction Code and Rotated Reed-

Solomon code, to gain additional savings in reconstruction time. 

Haoyu Wang et. al [5]: In a modern cloud datacenter, a cascading failure will cause many 
Service Level Objective (SLO) violations. In a cascading failure, when a set of physical 
machines (PMs) in a failure domain are failed, their workloads are transferred to the PMs in 
another failure domain to continue. However, the new domain receiving additional workloads 
may become overloaded due to the resource oversubscription feature in the cloud, which easily 
leads to domain failures and subsequent workload transfer to other domains. This process repeats 
and a cascading failure is created finally. However, few previous methods can effectively handle 
the cascading failures. To handle this problem, we propose a Cascading Failure Resilience 
System (CFRS), which incorporates three methods: Overload-Avoidance VM Reassignment 
(OAVR), VM backup set placement (VMset) and Dynamic Oversubscription Ratio Adjustment 
(DOA). The experiments in trace-driven simulation show that CFRS outperforms other 
comparison methods in terms of the number of domain failures, the number of failed PMs and 
the number of SLO violations. 
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Haiying Shen et. al: With the rapid development of web applications in datacenters, network 
latency becomes more important to user experience. The network latency will be greatly 
increased by incast congestion, in which a huge number of requests arrive at the front-end server 
simultaneously. Previous incast problem solutions usually handle the data transmission between 
the data servers and the front-end server directly, and they are not sufficiently effective in 
proactively avoiding incast congestion. To further improve the effectiveness, in this paper [12], 
we propose a Proactive Incast Congestion Control system (PICC). Since each connection has 
bandwidth limit, PICC novelly limits the number of data servers concurrently connected to the 
front-end server to avoid the incast congestion through data placement. Specifically, the front-
end server gathers popular data objects (i.e., frequently requested data objects) into as few data 
servers as possible, but without overloading them. It also re-allocates the data objects that are 
likely to be concurrently or sequentially requested into the same server. As a result, PICC 
reduces the number of data servers concurrently connected to the front-end server (which avoids 
the incast congestion), and also the number of connection establishments (which reduces the 
network latency). Since the selected data servers tend to have long queues to send out data, to 
reduce the queuing latency, PICC incorporates a queuing delay reduction algorithm that assigns 
higher transmission priorities to data objects with smaller sizes and longer queuing times. The 
experimental results on simulation and a real cluster based on a benchmark show the superior 
performance of PICC over previous incast congestion problem solutions. 

ALGORITHM 

In this we used algorithms like –  

Random Forest:  Random forest is a Supervised Machine Learning Algorithm that is used 
widely in Classification and Regression problems. It builds decision trees on different samples 
and takes their majority vote for classification and average in case of regression. 

Decision Tree: Decision trees use multiple algorithms to decide to split a node into two or more 
sub-nodes. The creation of sub-nodes increases the homogeneity of resultant sub-nodes. In other 
words, we can say that the purity of the node increases with respect to the target variable. 

KNN: K Nearest Neighbour is a simple algorithm that stores all the available cases and classifies 
the new data or case based on a similarity measure. It is mostly used to classifies a data point 
based on how its neighbours are classified. 

Support Vector Machine: Support Vector Machine (SVM) is a supervised machine learning 
algorithm used for both classification and regression. Though we say regression problems as well 
its best suited for classification. The objective of SVM algorithm is to find a hyperplane in an N-

dimensional space that distinctly classifies the data points. 
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Voting Classifier: A voting classifier is a machine learning estimator that trains various base 
models or estimators and predicts on the basis of aggregating the findings of each base estimator. 
The aggregating criteria can be combined decision of voting for each estimator output. 

CNN: A CNN is a kind of network architecture for deep learning algorithms and is specifically 
used for image recognition and tasks that involve the processing of pixel data. There are other 
types of neural networks in deep learning, but for identifying and recognizing objects, CNNs are 
the network architecture of choice. 

LSTM: Long short-term memory (LSTM) is an artificial neural network used in the fields of 
artificial intelligence and deep learning. Unlike standard feedforward neural networks, LSTM 
has feedback connections. Such a recurrent neural network (RNN) can process not only single 
data points (such as images), but also entire sequences of data (such as speech or video). 

BiLSTM: Bidirectional Long Short-Term Memory (BiLSTM) In general time series processing, 
LSTM often ignores future information. BiLSTM uses two separate hidden. layers to process 
series data in forward and reverse directions on the basis of LSTM, connecting the two hidden. 

RNN: A recurrent neural network (RNN) is a class of artificial neural networks where 
connections between nodes can create a cycle, allowing output from some nodes to affect 
subsequent input to the same nodes. This allows it to exhibit temporal dynamic behavior. 
Derived from feedforward neural networks, RNNs can use their internal state (memory) to 
process variable length sequences of inputs. This makes them applicable to tasks such as 
unsegmented, connected handwriting recognition or speech recognition. Recurrent neural 
networks are theoretically Turing complete and can run arbitrary programs to process arbitrary 
sequences of inputs. 

ARCHITECTURE 

The system architecture proposed in the image consists of three main components: data 
collection, model training, and failure prediction. Data is collected from various nodes in a 
WDM MESH network and processed using double exponential smoothing to identify anomalies. 
The processed data is then used to train an SVM model to distinguish between normal and failure 
states. Once trained, the SVM model is deployed to predict the failure status of the network 
nodes in real-time. The overall system aims to provide risk-aware protection for the network by 
proactively identifying and mitigating potential failures. 
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Fig.1: Model architecture 

COMPARISON TABLE 

Table.1: A summary of Disease Classification Model Based on Multi-Modal Feature Fusion 

S.No Title Author/

Referen

ce 

Method/Algorithm 

implemented 

Disadvantage Advantage 

1 DieHard: 

Reliable 

Scheduling to 

Survive 

Correlated 

Failures in 

Cloud Data 

Centers 

 

Mina 

Sedagh

at et. 

al., [2] 

The algorithm 

estimates the 

minimum number of 

extra tasks needed 

by optimizing task 

scheduling and 

placement to achieve 

desired job 

reliability in the 

presence of 

correlated failures. 

The algorithm 

may not handle 

highly complex 

failure 

correlations or 

dynamically 

changing failure 

patterns 

efficiently, 

potentially 

leading to 

suboptimal 

reliability and 

increased 

computational 

It effectively 

approximates the 

minimum number 

of additional tasks 

required, 

optimizing job 

reliability under 

correlated failures, 

and balances task 

scheduling and 

placement to 

maintain service 

integrity. 
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overhead in 

large-scale data 

centers. 

2 Failure 

prediction of 

data centers 

using time 

series and 

fault tree 

analysis 

Thanya

lak 

Chaler

marrew

ong et. 

al., [3] 

ARMA for time-

series prediction of 

hardware failures 

using historical data, 

then integrate Fault 

Tree Analysis to 

identify potential 

failure causes. 

Simulate on Simi's 

platform to validate 

prediction accuracy. 

ARMA may 

struggle with 

non-linear 

failure patterns 

and dynamic 

workloads, 

while Fault Tree 

Analysis can 

become 

complex with 

many failure 

modes, 

potentially 

reducing 

scalability and 

adaptability in 

diverse data 

center 

environments. 

Achieves high 

prediction 

accuracy of 97% 

by combining 

ARMA's time-

series analysis with 

Fault Tree 

Analysis. This 

integrated 

approach 

effectively 

anticipates 

hardware failures, 

enhancing system 

reliability and 

performance in 

data centers. 

3 Partial-

parallel-

repair (ppr): a 

distributed 

technique for 

repairing 

erasure coded 

storage 

Subrata 

Mitra 

et. al., 

[4] 

Divide 

reconstruction into 

small tasks, 

distribute them 

across nodes, and 

combine results 

using a distributed 

protocol. This 

reduces network 

load and repair time 

compared to 

traditional methods. 

Increased 

complexity in 

coordination and 

protocol 

implementation 

may require 

more 

sophisticated 

management 

and 

synchronization, 

potentially 

complicating 

system 

maintenance. 

Significantly 

reduces network 

pressure and repair 

time, compatible 

with existing 

erasure codes, and 

requires no 

additional storage 

overhead, 

enhancing 

efficiency and 

reliability in data 

reconstruction. 
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4 Approaches 

for resilience 

against 

cascading 

failures in 

cloud 

datacenters 

H. 

Wang 

et. al., 

[5]  

CFRS with OAVR 

for proactive VM 

reassignment, VMset 

for strategic backup 

placement, and DOA 

for dynamic 

oversubscription 

adjustment. Simulate 

to balance load, 

reduce domain 

failures, and mitigate 

SLO violations. 

CFRS's 

complexity may 

increase 

operational 

overhead and 

require 

significant 

computational 

resources. 

Additionally, 

dynamic 

adjustments 

could introduce 

latency and 

impact 

performance if 

not finely tuned 

or monitored 

closely. 

CFRS effectively 

minimizes 

cascading failures 

by distributing 

loads intelligently, 

optimizing 

resource usage, 

and adapting to 

overload scenarios. 

This leads to 

reduced domain 

failures and fewer 

SLO violations 

compared to 

traditional 

methods. 

5 Proactive 

incast 

congestion 

control in a 

datacenter 

serving web 

applications 

H. Shen 

et. al., 

[6]  

PICC gathers 

popular data objects 

into fewer servers, 

reallocates objects 

with similar request 

patterns to the same 

server, limits 

concurrent 

connections, and 

prioritizes smaller, 

older data objects to 

reduce latency. 

PICC may 

create 

imbalances in 

server load and 

potentially 

overload 

selected servers, 

leading to 

uneven 

performance and 

increased 

latency for less 

popular or 

infrequently 

accessed data 

objects. 

PICC effectively 

reduces incast 

congestion and 

connection 

establishments, 

minimizing 

network latency 

and improving 

overall user 

experience by 

proactively 

managing data 

placement and 

queuing priorities 

for popular data 

objects. 

SUMMARY 
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Several techniques for improving reliability and performance in data centers have been proposed. 
One method optimizes task scheduling to enhance job reliability despite correlated failures, 
though it may struggle with complex or dynamic failure patterns. Another approach combines 
ARMA time-series prediction with Fault Tree Analysis to achieve high accuracy in forecasting 
hardware failures, but it may not scale well with complex failure modes. A distributed repair 
technique reduces network load and repair time by dividing tasks and using distributed protocols, 
though it introduces coordination complexity. Additionally, a proactive method addresses 
cascading failures through intelligent load distribution and resource optimization, while another 
technique controls incast congestion by managing data placement and connection priorities, 
reducing latency but potentially leading to server imbalances. 

CONCLUSION 

In cloud data centers, high service reliability and availability are crucial to application QoS. In 
this paper, we proposed a failure prediction model multi-layer Bidirectional LSTM (called Bi-
LSTM). Bi-LSTM can more accurately predict the termination statuses of tasks and jobs using 
Google cluster trace compared with previous methods. In our method, we first input the data into 
forward state and backward state in order to adjust the weight of both closer and further input 
features. We then find that the further input features is essential to achieving high prediction 
accuracy. Secondly, in the experiments, we compare Bi-LSTM with other comparison methods 
including statistical, machine learning and deep learning based methods and evaluate the 
performance with three metrics: accuracy and F1 score, receiver operating characteristic and 
time cost overhead. The results show that we achieved 93% accuracy in task failure prediction 
and 87% accuracy in job failure prediction. We also achieved 92% F1 score in task failure 
prediction and 86% F1 score in job failure prediction. Our prediction method Bi-LSTM also 
have low FPR which can also indicate the proactive failure management based on prediction 
results become more effective. We also observe that the time cost overhead for Bi-LSTM is 
almost the same compared with RNN and LSTM, which means Bi-LSTM can achieve higher 
prediction performance with no further time cost. 
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