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Abstract—The proposed research work specifies the modified version of binary vedic multiplier 

using vedic sutras of ancient vedic mathematics.It provides modification in preliminarilry 

implemented vedic multiplier.The modified binary vedic multiplier is preferable has shown 

improvement in the terms of the time delay and also device utilization.The proposed technique was 

designed and implemented in Verilog HDL.For HDL simulation, modelsim tool is used and for 

circuit synthesis, Xilinx is used.The simulation has been done for 4 bit, 8 bit, 16 bit,32 bit 

multiplication operation. Only for 32 bit binary vedic multiplier technique the simulation results 

are shown.This modified multiplication technique is extended for larger sizes. The outcomes of 

this multiplication technique is compared with existing vedic multiplier techniques

. 

1. INTRODUCTION 

1.1 Overview: 

 BINARY multipliers are a widely used 

building block element in the design of 

microprocessors and embedded systems, and 

therefore, they are an important target for 

implementation optimization. Current 

implementations of binary multiplication 

follow the steps of :  

1) recoding of the multiplier in digits in 

a certain number system;  

2) digit multiplication of each digit by 

the multiplicand, resulting in a certain 

number of partial products; 

 3) reduction of the partial product 

array to two operands using 

multioperand addition techniques; 

 

 

 

4) carry-propagate addition of the two 

operands to obtain the final result. The 

recoding type is a key issue, since it 

determines the number of partial 

products.  

 The usual recoding process recodes a 

binary operand into a signed-digit operand 

with digits in a minimally redundant digit set. 

Specifically, for radix-r (r = 2m), the binary 

operand is composed of nonredundant radix-r 

digits (by just making groups of m bits), and 

these are recoded from the set {0, 1,...,r − 1} to 

theset {−r/2,..., −1, 0, 1, . . ., r/2} to reduce the 

complexity of digit multiplications. For n-bit 

operands, a total of n/m partial products are 

generated for two’s complement 

representation, and (n + 1)/m for unsigned 

representation. Radix-4 modified Booth is a 

widely used recoding method, that recodes a 
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binary operand into radix-4 signed digits in the 

set {−2, −1, 0, 1, 2}. This is a popular recoding 

since the digit multiplication step to generate 

the partial products only requires simple shifts 

and complementation.  

 The resulting number of partial 

products is about n/2. Higher radix signed 

recoding is less popular because the generation 

of the partial products requires odd multiples 

of the multiplicand which can not be achieved 

by means of simple shifts, but require carry-

propagate additions. For instance, for radix-

4signed digit recoding [9] the digit set is {−8, 

−7,..., 0,..., 7, 8}, so that some odd multiples of 

the multiplicand have to be generated. 

Specifically, it is required to generate ×3, ×5, 

and ×7 multiples (×6 is obtained by simple 

shift of ×3). The generation of each of these 

odd multiplies requires a two term addition or 

subtraction, yielding a total of three carry-

propagate additions.  

1.2 LITERATURESURVEY: 

 However, the advantage of the high 

radix is that the number of partial products is 

further reduced. For instance, for radix-4and n-

bit operands, about n/4 partial products are 

generated. Although less popular than radix-4, 

there exist industrial instances of radix-8. and 

radix-4multiplier in microprocessors 

implementations. The choice of these radices is 

related to area/delay/power optimization of 

pipelined multipliers (or fused multiplier adder 

as in the case of a Intel Itanium 

microprocessor), for balancing delay between 

stages and/or reduce the number of pipelining 

flip-flops. 

 A further consideration is that carry-

propagate adders are today highly energy-

delay optimized, while partial product 

reductions trees suffer the increasingly serious 

problems related to a complex wiring and 

glitching due to unbalanced signal paths. It is 

recognized in the literature that a radix-8 

recoding leads to lower power multipliers 

compared to radix-4 recoding at the cost of 

higher latency (as a combinational block, 

without considering pipelining). Moreover, 

although the radix-4multiplier requires the 

generation of more odd multiples and has a 

more complex wiring for the generation of 

partial products, a recent microprocessor 

design  considered it to be the best choice for 

low power (under the specific constraints for 

this microprocessor).  

 In some optimizations for radix-4 two’s 

complement multipliers were introduced. 

Although for n-bit operands, a total of n/2 

partial products are generated, the 

resultingmaximum height of the partial product 

array is n/2 + 1 elements to be added (in just 

one of the columns). This extra height by a 

single-bit row is due to the +1 introduced in 

the bit array to make the two’s complement of 

the most significant partial product (when the 

recoded most significant digit of the multiplier 

is negative). The maximum column height 

may determine the delay and complexity of the 

reduction tree, authors showed that this extra 

column of one bit could be assimilated (with 

just a simplified three bit addition) with the 

most significant part of the first partial product 

without increasing the critical path of the 

recoding and partial product generation stage. 

The result is that the partial product array has a 

maximum height of n/2. This reduction of one 

bit in the maximum height might be of interest 
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for high-performanceshort-bit width two’s 

complement multipliers (small n) with tight 

cycle time constraints, that are very common 

in SIMD digital signal processing applications. 

Moreover, if n is a power of two, the 

optimization allows to use only 4-2 carry-save 

adders for the reduction tree, potentially 

leading to regular layouts. These kind of 

optimizations can become particularly 

important as they may add flexibility to the 

“optimal” design of the pipelined multiplier.  

2. LITERATURE SURVEY 

2.1 EXISTING METHODS-

MULTIPLERS: 

2.1.1 MULTIPLERS 

 Multipliers play an important role in 

today’s digital signal processing and various 

other applications. With advances in 

technology, many researchers have tried and 

are trying to design multipliers which offer 

either of the following design targets  

1. High speed, 

2. Low power consumption, 

3. Regularity of layout and hence less 

area or even combination of them in 

one multiplier thus making them 

suitable for various high speed, 

4. Low power and compact VLSI 

implementation. 

 The common multiplication method 

is “add and shift” algorithm. In parallel 

multipliers number of partial products to be 

added is the main parameter that determines 

the performance of the multiplier. To reduce 

the number of partial products to be added, 

with increasing parallelism, the amount of 

shifts between the partial products and 

intermediate sums to be added will increase 

which may result in reduced speed, increase 

in silicon area due to irregularity of structure 

and also increased power consumption due 

to increase in interconnect resulting from 

complex routing. On the other hand “serial-

parallel” multipliers compromise speed to 

achieve better performance for area and 

power consumption. The selection of a 

parallel or serial multiplier actually depends 

on the nature of application. In this lecture 

we introduce the multiplication algorithms 

and architecture and compare them in terms 

of speed, area, power and combination of 

these metrics. AND gates are used to 

generate the Partial Products (PP). If the 

multiplicand is N-bits and the Multiplier is 

M-bits then there is N* M partial product.  

2.1.2 HISTORY OF MULTIPLIERS 

 The early computer systems had 

what are known as Multiply and Accumulate 

units to perform multiplication between two 

binary unsigned numbers. The Multiply and 

Accumulate unit was the simplest 

implementation of a multiplier. The basic 

block diagram of such a system is given 

below.
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Fig.2.1 Multiplier Block Diagram 

 

2.1.3 IMPLEMENTATION 

 The MAC unit requires a 4-bit 

multiplicand register, 4-bit multiplier 

register, a 4-bit full adder and an 8-bit 

accumulator to hold the product. In the 

figure above the product register holds the 

8-bit result. In a typical binary 

multiplication, based on the multiplier bit 

being processed, either zero or the 

multiplicand is shifted and then added. 

 Following the same process would 

require an 8-bit adder. Instead, in the above 

design the contents of the product register 

are shifted right by one position and the 

multiplicand is added 5 to the contents. This 

multiply and accumulate block is also 

known by the name serial-parallel multiplier 

as the multiplier bits are processed serially 

but the addition takes place in parallel. The 

second type of multiplier is the parallel array 

multiplier. 

 The desire to speed up the rate at which the 

output is generated resulted in the 

development of this category of multiplier. 

In a serial-parallel multiplier discussed 

above, it takes one clock cycle to process 

one bit of the data input at any given time. 

Therefore, when working on an N-bit input 

it would take at least N clock cycles to 

generate the final output. In a parallel array 

multiplier the result is obtained as soon as 

inputs are presented to the multiplier. This is 

mainly because of the use of AND array 

structure to compute the partial product 

terms. Once the partial product terms are 

generated the only delay in generating the 

output is contributed by the adders which 

sum the partial product termscolumn wise to 

generate the result. 
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3. VEDIC MULTIPLICATION 

ALGORITHMS 

3.1 HISTORY OF VEDIC 

MATHEMATICS:-  

Vedic mathematics is part of four Vedas 

(books of wisdom). It is part of Sthapatya- 

Veda (book on civil engineering and 

architecture), which is an upa-veda 

(supplement) of Atharva Veda. It covers 

explanation of several modern mathematical 

terms including arithmetic, geometry (plane, 

co-ordinate), trigonometry, quadratic 

equations, factorization and even calculus. 

His Holiness Jagadguru Shankaracharya 

Bharati Krishna Teerthaji Maharaja (1884-

1960) comprised all this work together and 

gave its mathematical explanation while 

discussing it for various applications. 

Swahiji constructed 16 sutras (formulae) and 

16 Upa sutras (sub formulae) after extensive 

research in Atharva Veda. Obviously these 

formulae are not to be found in present text 

of Atharva Veda because these formulae 

were constructed by Swamiji himself. Vedic 

mathematics is not only a mathematical 

wonder but also it is logical. That‟s why 

VM has such a degree of eminence which 

cannot be disapproved. Due these 

phenomenal characteristic, VM has already 

crossed the boundaries of India and has 

become a leading topic of research abroad. 

VM deals with several basic as well as 

complex mathematical operations. 

Especially, methods of basic arithmetic are 

extremely simple and powerful.  

 

 

3.2 ALGORITHMS OF VEDIC 

MATHEMATICS:-  

3.2.1 VEDIC MULTIPLICATION  

The proposed Vedic multiplier is based on 

the Vedic multiplication formulae (Sutras). 

These Sutras have been traditionally used 

for the multiplication of two numbers in the 

decimal number system. In this work, we 

apply the same ideas to the binary number 

system to make the proposed algorithm 

compatible with the digital hardware. Vedic 

multiplication based on some algorithms, 

some are discussed below:  

3.2.1.1 Urdhva Tiryakbhyam sutra  

The multiplier is based on an algorithm 

Urdhva Tiryakbhyam (Vertical & 

Crosswise) of ancient Indian Vedic 

Mathematics. Urdhva Tiryakbhyam Sutra is 

a general multiplication formula applicable 

to all cases of multiplication. It literally 

means “Vertically and crosswise”. It is 

based on a novel concept through which the 

generation of all partial products can be 

done with the concurrent addition of these 

partial products. The parallelism in 

generation of partial products and their 

summation is obtained using Urdhava 

Triyakbhyam explained in fig 2.1. The 

algorithm can be generalized for n x n bit 

number. Since the partial products and their 

sums are calculated in parallel, the 

multiplier is independent of the clock 

frequency of the processor. Thus the 

multiplier will require the same amount of 

time to calculate the product and hence is 

independent of the clock frequency. The net 

advantage is that it reduces the need of 

microprocessors to operate at increasingly 



 

Volume 12, Issue 03, March 2021                       ISSN 2581 – 4575 Page 61 
 

high clock frequencies. While a higher clock 

frequency generally results in increased 

processing power, its disadvantage is that it 

also increases power dissipation which 

results in higher device operating 

temperatures. By adopting the Vedic 

multiplier, microprocessors designers can 

easily circumvent these problems to avoid 

catastrophic device failures. The processing 

power of multiplier can easily be increased 

by increasing the input and output data bus 

widths since it has a quite a regular 

structure. Due to its regular structure, it can 

be easily layout in a silicon chip. The 

Multiplier has the advantage that as the 

number of bits increases, gate delay and area 

increases very slowly as compared to other 

multipliers. Therefore it is time, space and 

power efficient. It is demonstrated that this 

architecture is quite efficient in terms of 

silicon area/speed.  

4. EXISTING METHODS 

 

4.1 Vedic Wallace Multiplier

 

 

In general, Wallace tree addition uses full adders toextensively reduce the partial products. 

 
 

  

Figure 3.1 Multiplication of Two Decimal Numbers: 252x846 

 

When the critical path is compared between 

the critical path in 4 bit conventional and 

Vedic multiplier, for a 4-bit multiplier, 4 

partial products will be generated, as shown 

in Figure 2 and are named as p0 to p3. For 

Wallace tree multiplier, a 3:2 reduction is 

used, so that the partial products are reduced 

from 4 to 3. The Delay in critical path is 
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given by the addition of 3 full adder sums, 2 

full adder carry, and half adder carry. The 

critical path for Vedic mathematics as 

shown in Figure 3, is given by 2FAS is 

reduced by 3HAS and in terms of XOR 

gates, Vedic-Wallace uses 3XOR gates 

instead of 4XOR  i.e., less carry propagation 

delay than the conventional method. Hence, 

Vedic-Wallace has a variable improvement 

over design ware depending upon the 

number of bits in multiplication

 

 

                           Figure 3.2 4x4 Multiplier using Wallace Tree 

 

 

 
 

Figure 3. 4x4 Multiplier using Vedic  Reduction 
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5. PROPOSED METHOD 

5.1 . INTRODUCTION  

Any proposed system must be efficient in 

terms of power, speed and size as per 

growing technology. In early days Vedic 

mathematics is based on 16 vedic sutras.By 

using Vedic methods the mathematical 

operations are fast and the processing speed 

to perform the operations can be improved. 

There has been many existing binary 

multipliers which are efficient. 

 II. MULTIPLIER  

A binary multiplier [3] can be used in digital 

electronics as a electronic circuit,such as in 

computers to find the product of two binary 

numbers.Carbon-copy of normal 

multiplication technique is used by binary 

multiplier,the multiplicand is multiplied 

with each bit of the multiplier beginning 

from the least significant bit.Two half 

adder(HA) modules can be used in order to 

implement a 2-bit binary multiplier.A no of 

computer arithmetic calculations can be 

used to appliance digital multiplier.Among 

these techniques many imply computing a 

set of partial products, and then summing 

the generated partial products together.Fig. 

1, shows 2x2 binary multiplier. 

 
Fig. 1. 2x2 Binary Multiplier 

A. Ripple Carry Adder(RCA)  

In a multiplier number of Full adders are 

arranged in a manner to give the results of 

an addition operation of n-bit binary 

sequence.The input to next Full adder stage 

is obtained from the previous carry output of 

adder,it repeats until it reaches to the ending 

stage.Fig. 2 shows Four bit(RCA) Ripple 

Carry Adder [4]. 

III. VEDIC MULTIPLIER  

The mode used by Vedic multiplier [6] is 

Vedic mathematics.By using this technique 

it will increase,and consumes 

fewerhardware elements.The sutra [6] used 

by Vedic multiplier is Urdhva 

Tiryakbhyam[3] which means Vertically as 

well as Crosswise. The Fig. 3 shows block 

diagram of 32 bit vedic multiplier circuit. 

The2 input bits are separated into 2 similar 

parts the vertical and cross product 

calculations can be done as shown in Fig. 3, 

with inputs A[31:0] and B[31:0].As shown 

in the Fig. 3, the 2 adders are used in the 

design of intermediate stages of the 

addition.The output carry Cout from these 
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two adders is given as input to another 

RCA.If bits are not of equal sizes 

concatenate them.For 32-bit Modified Vedic 

multiplier the outputs of parallel adder is 

given to OR gate and of the size of last RCA 

is reduced to half. Fig. 3, shows 32-bit 

Vedic multiplier. 

 
 

Fig. 2. 4-Bit Ripple Carry Adder 

 
Fig. 3. 4-Bit Vedic Multiplier 

IV. MODIFIED VEDIC MULTIPLIER  

In the proposed paper, the two parallel 

adders are replaced by CSA [4] for the better 

execution of the multiplier architecture. The 

recommended modified Vedic 

multiplication methodology is done in the 

following for 4 bit inputs, A(A3 -A0) and 

B(B3 -B0) and 8 bit output S (S7 -S0). 

 
A multiplier of 2 bit is used to calculate 

intermediate stage results, and the output is 

4 bits. (A3A2)(B3B2) using 2 bit multiplier 

generates result: S33S32S31S30 

(A3A2)(B1B0) using 2 bit multiplier 

generates result: S23S22S21S20 

(A1A0)(B3B2) using 2 bit multiplier 

generates result: S13S12S11S10 

(A1A0)(B1B0) using 2 bit multiplier 

generates result: S03S02S01S00 

 
Fig. 4. Modified 4 Bit Vedic Multiplier 

The 4 bit CSA Carry Save Adder [4] is used 

to add three 4 bit data inputs: 

S23S22S21S20, S13S12S11S10 and 

S31S30 S03 S02. The proposed 4 bit 

modified Vedic multiplier [7] is designed 

and the Fig. 4 shows it. The last two MSBs 

of CSA outputs are given as inputs to OR 

gate. In addition, the last stage 4 bit RCA is 

replaced by 2 bit adder circuit through 

which the output value of OR gate can be 

controlled. One of the input to last stage 2-
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bit adder[6] is obtaining from the output of 

or gate. 

SIMULATION RESULTS 

 

First, a 4-bit Vedic multiplier is designed 

and in the same manner the size of Vedic 

multiplier is increased up to 32- bit i.e, 8-bit, 

16-bit, and then 32-bit using RCA and then 

by using CSA [4][8], the modified 4-bit 

Vedic multiplier is implemented and in the 

same way the size of the modified vedic 

multiplier is increased upto 32-bit i.e, 8, 16, 

and 32- bit[7]. For the functionality 

verification it was done usingMODELSIM 

and the final synthesis is done by using 

XILINX ISE DESIGN SUITE.And also the 

working of the modelsim process is shown 

in the following: 

PROPOSED METHOD RESULTS 

 
4x4 

EXTENSION METHOD RESULTS 

Simulation results 

 
2x2 
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4x4 

 
8x8 

 
16x16 

 
32x32 

 

 

Design Summaries 
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2x2 

 

4x4 

 

8x8 

 

16x16 
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32x32 

Time summaries 

 

2x2 
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4x4

CONCLUSION 

This work has presented a systematic 

method for binary multiplier[1] circuits 

which is based on Vedic mathematics.When 

it comes to the terms of time delay then the 

proposed system is more efficient than 

exisitng methods. Elongation for a higher bit 

size can be done with help of proposed 

technique. Moreover, adders of different 

architectures[5] can be used in the CSA 

Carry Save Adder design used in the 

proposed modified Vedic multiplier. Among 

many techniques modified architecture is 

used to increase and speed up the 

multiplication. In this technique hike in area 

occured it is a drawback. 
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