

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 56

OPTIMIZED NEURAL ARCHITECTURE 32 BIT VEDIC MULTIPLIER
1KAKARLA LAKSHMI PRIYANKA, 2T.RAGHAVENDRA VISHNU M.TECH,PHD

1STUDENT, ECE DEPARTMENT,PRIYADARSHINI INSTITUTE OF TECHNOLOGY & SCIENCE

FOR WOMEN
2ASSISTANCE PROFESSOR, PRIYADARSHINI INSTITUTE OF TECHNOLOGY & SCIENCE FOR

WOMEN

Abstract—The proposed research work specifies the modified version of binary vedic multiplier

using vedic sutras of ancient vedic mathematics.It provides modification in preliminarilry

implemented vedic multiplier.The modified binary vedic multiplier is preferable has shown

improvement in the terms of the time delay and also device utilization.The proposed technique was

designed and implemented in Verilog HDL.For HDL simulation, modelsim tool is used and for

circuit synthesis, Xilinx is used.The simulation has been done for 4 bit, 8 bit, 16 bit,32 bit

multiplication operation. Only for 32 bit binary vedic multiplier technique the simulation results

are shown.This modified multiplication technique is extended for larger sizes. The outcomes of

this multiplication technique is compared with existing vedic multiplier techniques

.

1. INTRODUCTION

1.1 Overview:

 BINARY multipliers are a widely used

building block element in the design of

microprocessors and embedded systems, and

therefore, they are an important target for

implementation optimization. Current

implementations of binary multiplication

follow the steps of :

1) recoding of the multiplier in digits in

a certain number system;

2) digit multiplication of each digit by

the multiplicand, resulting in a certain

number of partial products;

 3) reduction of the partial product

array to two operands using

multioperand addition techniques;

4) carry-propagate addition of the two

operands to obtain the final result. The

recoding type is a key issue, since it

determines the number of partial

products.

 The usual recoding process recodes a

binary operand into a signed-digit operand

with digits in a minimally redundant digit set.

Specifically, for radix-r (r = 2m), the binary

operand is composed of nonredundant radix-r

digits (by just making groups of m bits), and

these are recoded from the set {0, 1,...,r − 1} to

theset {−r/2,..., −1, 0, 1, . . ., r/2} to reduce the

complexity of digit multiplications. For n-bit

operands, a total of n/m partial products are

generated for two’s complement

representation, and (n + 1)/m for unsigned

representation. Radix-4 modified Booth is a

widely used recoding method, that recodes a

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 57

binary operand into radix-4 signed digits in the

set {−2, −1, 0, 1, 2}. This is a popular recoding

since the digit multiplication step to generate

the partial products only requires simple shifts

and complementation.

 The resulting number of partial

products is about n/2. Higher radix signed

recoding is less popular because the generation

of the partial products requires odd multiples

of the multiplicand which can not be achieved

by means of simple shifts, but require carry-

propagate additions. For instance, for radix-

4signed digit recoding [9] the digit set is {−8,

−7,..., 0,..., 7, 8}, so that some odd multiples of

the multiplicand have to be generated.

Specifically, it is required to generate ×3, ×5,

and ×7 multiples (×6 is obtained by simple

shift of ×3). The generation of each of these

odd multiplies requires a two term addition or

subtraction, yielding a total of three carry-

propagate additions.

1.2 LITERATURESURVEY:

 However, the advantage of the high

radix is that the number of partial products is

further reduced. For instance, for radix-4and n-

bit operands, about n/4 partial products are

generated. Although less popular than radix-4,

there exist industrial instances of radix-8. and

radix-4multiplier in microprocessors

implementations. The choice of these radices is

related to area/delay/power optimization of

pipelined multipliers (or fused multiplier adder

as in the case of a Intel Itanium

microprocessor), for balancing delay between

stages and/or reduce the number of pipelining

flip-flops.

 A further consideration is that carry-

propagate adders are today highly energy-

delay optimized, while partial product

reductions trees suffer the increasingly serious

problems related to a complex wiring and

glitching due to unbalanced signal paths. It is

recognized in the literature that a radix-8

recoding leads to lower power multipliers

compared to radix-4 recoding at the cost of

higher latency (as a combinational block,

without considering pipelining). Moreover,

although the radix-4multiplier requires the

generation of more odd multiples and has a

more complex wiring for the generation of

partial products, a recent microprocessor

design considered it to be the best choice for

low power (under the specific constraints for

this microprocessor).

 In some optimizations for radix-4 two’s

complement multipliers were introduced.

Although for n-bit operands, a total of n/2

partial products are generated, the

resultingmaximum height of the partial product

array is n/2 + 1 elements to be added (in just

one of the columns). This extra height by a

single-bit row is due to the +1 introduced in

the bit array to make the two’s complement of

the most significant partial product (when the

recoded most significant digit of the multiplier

is negative). The maximum column height

may determine the delay and complexity of the

reduction tree, authors showed that this extra

column of one bit could be assimilated (with

just a simplified three bit addition) with the

most significant part of the first partial product

without increasing the critical path of the

recoding and partial product generation stage.

The result is that the partial product array has a

maximum height of n/2. This reduction of one

bit in the maximum height might be of interest

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 58

for high-performanceshort-bit width two’s

complement multipliers (small n) with tight

cycle time constraints, that are very common

in SIMD digital signal processing applications.

Moreover, if n is a power of two, the

optimization allows to use only 4-2 carry-save

adders for the reduction tree, potentially

leading to regular layouts. These kind of

optimizations can become particularly

important as they may add flexibility to the

“optimal” design of the pipelined multiplier.

2. LITERATURE SURVEY

2.1 EXISTING METHODS-

MULTIPLERS:

2.1.1 MULTIPLERS

 Multipliers play an important role in

today’s digital signal processing and various

other applications. With advances in

technology, many researchers have tried and

are trying to design multipliers which offer

either of the following design targets

1. High speed,

2. Low power consumption,

3. Regularity of layout and hence less

area or even combination of them in

one multiplier thus making them

suitable for various high speed,

4. Low power and compact VLSI

implementation.

 The common multiplication method

is “add and shift” algorithm. In parallel

multipliers number of partial products to be

added is the main parameter that determines

the performance of the multiplier. To reduce

the number of partial products to be added,

with increasing parallelism, the amount of

shifts between the partial products and

intermediate sums to be added will increase

which may result in reduced speed, increase

in silicon area due to irregularity of structure

and also increased power consumption due

to increase in interconnect resulting from

complex routing. On the other hand “serial-

parallel” multipliers compromise speed to

achieve better performance for area and

power consumption. The selection of a

parallel or serial multiplier actually depends

on the nature of application. In this lecture

we introduce the multiplication algorithms

and architecture and compare them in terms

of speed, area, power and combination of

these metrics. AND gates are used to

generate the Partial Products (PP). If the

multiplicand is N-bits and the Multiplier is

M-bits then there is N* M partial product.

2.1.2 HISTORY OF MULTIPLIERS

 The early computer systems had

what are known as Multiply and Accumulate

units to perform multiplication between two

binary unsigned numbers. The Multiply and

Accumulate unit was the simplest

implementation of a multiplier. The basic

block diagram of such a system is given

below.

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 59

Fig.2.1 Multiplier Block Diagram

2.1.3 IMPLEMENTATION

 The MAC unit requires a 4-bit

multiplicand register, 4-bit multiplier

register, a 4-bit full adder and an 8-bit

accumulator to hold the product. In the

figure above the product register holds the

8-bit result. In a typical binary

multiplication, based on the multiplier bit

being processed, either zero or the

multiplicand is shifted and then added.

 Following the same process would

require an 8-bit adder. Instead, in the above

design the contents of the product register

are shifted right by one position and the

multiplicand is added 5 to the contents. This

multiply and accumulate block is also

known by the name serial-parallel multiplier

as the multiplier bits are processed serially

but the addition takes place in parallel. The

second type of multiplier is the parallel array

multiplier.

 The desire to speed up the rate at which the

output is generated resulted in the

development of this category of multiplier.

In a serial-parallel multiplier discussed

above, it takes one clock cycle to process

one bit of the data input at any given time.

Therefore, when working on an N-bit input

it would take at least N clock cycles to

generate the final output. In a parallel array

multiplier the result is obtained as soon as

inputs are presented to the multiplier. This is

mainly because of the use of AND array

structure to compute the partial product

terms. Once the partial product terms are

generated the only delay in generating the

output is contributed by the adders which

sum the partial product termscolumn wise to

generate the result.

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 60

3. VEDIC MULTIPLICATION

ALGORITHMS

3.1 HISTORY OF VEDIC

MATHEMATICS:-

Vedic mathematics is part of four Vedas

(books of wisdom). It is part of Sthapatya-

Veda (book on civil engineering and

architecture), which is an upa-veda

(supplement) of Atharva Veda. It covers

explanation of several modern mathematical

terms including arithmetic, geometry (plane,

co-ordinate), trigonometry, quadratic

equations, factorization and even calculus.

His Holiness Jagadguru Shankaracharya

Bharati Krishna Teerthaji Maharaja (1884-

1960) comprised all this work together and

gave its mathematical explanation while

discussing it for various applications.

Swahiji constructed 16 sutras (formulae) and

16 Upa sutras (sub formulae) after extensive

research in Atharva Veda. Obviously these

formulae are not to be found in present text

of Atharva Veda because these formulae

were constructed by Swamiji himself. Vedic

mathematics is not only a mathematical

wonder but also it is logical. That‟s why

VM has such a degree of eminence which

cannot be disapproved. Due these

phenomenal characteristic, VM has already

crossed the boundaries of India and has

become a leading topic of research abroad.

VM deals with several basic as well as

complex mathematical operations.

Especially, methods of basic arithmetic are

extremely simple and powerful.

3.2 ALGORITHMS OF VEDIC

MATHEMATICS:-

3.2.1 VEDIC MULTIPLICATION

The proposed Vedic multiplier is based on

the Vedic multiplication formulae (Sutras).

These Sutras have been traditionally used

for the multiplication of two numbers in the

decimal number system. In this work, we

apply the same ideas to the binary number

system to make the proposed algorithm

compatible with the digital hardware. Vedic

multiplication based on some algorithms,

some are discussed below:

3.2.1.1 Urdhva Tiryakbhyam sutra

The multiplier is based on an algorithm

Urdhva Tiryakbhyam (Vertical &

Crosswise) of ancient Indian Vedic

Mathematics. Urdhva Tiryakbhyam Sutra is

a general multiplication formula applicable

to all cases of multiplication. It literally

means “Vertically and crosswise”. It is

based on a novel concept through which the

generation of all partial products can be

done with the concurrent addition of these

partial products. The parallelism in

generation of partial products and their

summation is obtained using Urdhava

Triyakbhyam explained in fig 2.1. The

algorithm can be generalized for n x n bit

number. Since the partial products and their

sums are calculated in parallel, the

multiplier is independent of the clock

frequency of the processor. Thus the

multiplier will require the same amount of

time to calculate the product and hence is

independent of the clock frequency. The net

advantage is that it reduces the need of

microprocessors to operate at increasingly

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 61

high clock frequencies. While a higher clock

frequency generally results in increased

processing power, its disadvantage is that it

also increases power dissipation which

results in higher device operating

temperatures. By adopting the Vedic

multiplier, microprocessors designers can

easily circumvent these problems to avoid

catastrophic device failures. The processing

power of multiplier can easily be increased

by increasing the input and output data bus

widths since it has a quite a regular

structure. Due to its regular structure, it can

be easily layout in a silicon chip. The

Multiplier has the advantage that as the

number of bits increases, gate delay and area

increases very slowly as compared to other

multipliers. Therefore it is time, space and

power efficient. It is demonstrated that this

architecture is quite efficient in terms of

silicon area/speed.

4. EXISTING METHODS

4.1 Vedic Wallace Multiplier

In general, Wallace tree addition uses full adders toextensively reduce the partial products.

Figure 3.1 Multiplication of Two Decimal Numbers: 252x846

When the critical path is compared between

the critical path in 4 bit conventional and

Vedic multiplier, for a 4-bit multiplier, 4

partial products will be generated, as shown

in Figure 2 and are named as p0 to p3. For

Wallace tree multiplier, a 3:2 reduction is

used, so that the partial products are reduced

from 4 to 3. The Delay in critical path is

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 62

given by the addition of 3 full adder sums, 2

full adder carry, and half adder carry. The

critical path for Vedic mathematics as

shown in Figure 3, is given by 2FAS is

reduced by 3HAS and in terms of XOR

gates, Vedic-Wallace uses 3XOR gates

instead of 4XOR i.e., less carry propagation

delay than the conventional method. Hence,

Vedic-Wallace has a variable improvement

over design ware depending upon the

number of bits in multiplication

 Figure 3.2 4x4 Multiplier using Wallace Tree

Figure 3. 4x4 Multiplier using Vedic Reduction

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 63

5. PROPOSED METHOD

5.1 . INTRODUCTION

Any proposed system must be efficient in

terms of power, speed and size as per

growing technology. In early days Vedic

mathematics is based on 16 vedic sutras.By

using Vedic methods the mathematical

operations are fast and the processing speed

to perform the operations can be improved.

There has been many existing binary

multipliers which are efficient.

 II. MULTIPLIER

A binary multiplier [3] can be used in digital

electronics as a electronic circuit,such as in

computers to find the product of two binary

numbers.Carbon-copy of normal

multiplication technique is used by binary

multiplier,the multiplicand is multiplied

with each bit of the multiplier beginning

from the least significant bit.Two half

adder(HA) modules can be used in order to

implement a 2-bit binary multiplier.A no of

computer arithmetic calculations can be

used to appliance digital multiplier.Among

these techniques many imply computing a

set of partial products, and then summing

the generated partial products together.Fig.

1, shows 2x2 binary multiplier.

Fig. 1. 2x2 Binary Multiplier

A. Ripple Carry Adder(RCA)

In a multiplier number of Full adders are

arranged in a manner to give the results of

an addition operation of n-bit binary

sequence.The input to next Full adder stage

is obtained from the previous carry output of

adder,it repeats until it reaches to the ending

stage.Fig. 2 shows Four bit(RCA) Ripple

Carry Adder [4].

III. VEDIC MULTIPLIER

The mode used by Vedic multiplier [6] is

Vedic mathematics.By using this technique

it will increase,and consumes

fewerhardware elements.The sutra [6] used

by Vedic multiplier is Urdhva

Tiryakbhyam[3] which means Vertically as

well as Crosswise. The Fig. 3 shows block

diagram of 32 bit vedic multiplier circuit.

The2 input bits are separated into 2 similar

parts the vertical and cross product

calculations can be done as shown in Fig. 3,

with inputs A[31:0] and B[31:0].As shown

in the Fig. 3, the 2 adders are used in the

design of intermediate stages of the

addition.The output carry Cout from these

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 64

two adders is given as input to another

RCA.If bits are not of equal sizes

concatenate them.For 32-bit Modified Vedic

multiplier the outputs of parallel adder is

given to OR gate and of the size of last RCA

is reduced to half. Fig. 3, shows 32-bit

Vedic multiplier.

Fig. 2. 4-Bit Ripple Carry Adder

Fig. 3. 4-Bit Vedic Multiplier

IV. MODIFIED VEDIC MULTIPLIER

In the proposed paper, the two parallel

adders are replaced by CSA [4] for the better

execution of the multiplier architecture. The

recommended modified Vedic

multiplication methodology is done in the

following for 4 bit inputs, A(A3 -A0) and

B(B3 -B0) and 8 bit output S (S7 -S0).

A multiplier of 2 bit is used to calculate

intermediate stage results, and the output is

4 bits. (A3A2)(B3B2) using 2 bit multiplier

generates result: S33S32S31S30

(A3A2)(B1B0) using 2 bit multiplier

generates result: S23S22S21S20

(A1A0)(B3B2) using 2 bit multiplier

generates result: S13S12S11S10

(A1A0)(B1B0) using 2 bit multiplier

generates result: S03S02S01S00

Fig. 4. Modified 4 Bit Vedic Multiplier

The 4 bit CSA Carry Save Adder [4] is used

to add three 4 bit data inputs:

S23S22S21S20, S13S12S11S10 and

S31S30 S03 S02. The proposed 4 bit

modified Vedic multiplier [7] is designed

and the Fig. 4 shows it. The last two MSBs

of CSA outputs are given as inputs to OR

gate. In addition, the last stage 4 bit RCA is

replaced by 2 bit adder circuit through

which the output value of OR gate can be

controlled. One of the input to last stage 2-

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 65

bit adder[6] is obtaining from the output of

or gate.

SIMULATION RESULTS

First, a 4-bit Vedic multiplier is designed

and in the same manner the size of Vedic

multiplier is increased up to 32- bit i.e, 8-bit,

16-bit, and then 32-bit using RCA and then

by using CSA [4][8], the modified 4-bit

Vedic multiplier is implemented and in the

same way the size of the modified vedic

multiplier is increased upto 32-bit i.e, 8, 16,

and 32- bit[7]. For the functionality

verification it was done usingMODELSIM

and the final synthesis is done by using

XILINX ISE DESIGN SUITE.And also the

working of the modelsim process is shown

in the following:

PROPOSED METHOD RESULTS

4x4

EXTENSION METHOD RESULTS

Simulation results

2x2

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 66

4x4

8x8

16x16

32x32

Design Summaries

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 67

2x2

4x4

8x8

16x16

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 68

32x32

Time summaries

2x2

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 69

4x4

CONCLUSION

This work has presented a systematic

method for binary multiplier[1] circuits

which is based on Vedic mathematics.When

it comes to the terms of time delay then the

proposed system is more efficient than

exisitng methods. Elongation for a higher bit

size can be done with help of proposed

technique. Moreover, adders of different

architectures[5] can be used in the CSA

Carry Save Adder design used in the

proposed modified Vedic multiplier. Among

many techniques modified architecture is

used to increase and speed up the

multiplication. In this technique hike in area

occured it is a drawback.

REFERENCES

[1] I. Blake, G. Seroussi, andN.P.Smart,

Elliptic Curves in Cryptography,ser.

London Mathematical Society Lecture

Note Series.. Cambridge,U.K.:

Cambridge Univ. Press, 1999.

[2] N. R. Murthy and M. N. S. Swamy,

“Cryptographic applications of

brahmaqupta-bha skara equation,” IEEE

Trans. Circuits Syst. I, Reg.Papers, vol.

53, no. 7, pp. 1565–1571, 2006.

[3] L. Song and K. K. Parhi, “Low-energy

digit-serial/parallel finite field

multipliers,” J. VLSI Digit. Process.,

vol. 19, pp. 149–C166, 1998.

[4] P. K. Meher, “On efficient

implementation of accumulation in

finite field over GF(2m) and its

applications,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 17, no.

4, pp. 541–550, 2009.

[5] L. Song, K. K. Parhi, I. Kuroda, and

T.Nishitani, “Hardware/software

codesign of finite field datapath for low-

energy Reed-Solomn codecs,”IEEE

Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 8, no. 2, pp.160–172, Apr.

2000.

[6] G. Drolet, “A new representation of

elements of finite fields GF(2m)

yielding small complexity arithmetic

circuits,” IEEE Trans. Comput.,vol. 47,

no. 9, pp. 938–946, 1998.

Volume 12, Issue 03, March 2021 ISSN 2581 – 4575 Page 70

[7] C.-Y. Lee, J.-S. Horng, I.-C. Jou, and E.-

H. Lu, “Low-complexity bit-parallel

systolic montgomery multipliers for

special classes of GF(2m),” IEEE Trans.

Comput., vol. 54, no. 9, pp. 1061–1070,

Sep. 2005.

[8] P. K. Meher, “Systolic and super-systolic

multipliers for finite field GF(2m) based

on irreducible trinomials,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 55,

no. 4, pp. 1031–1040, May 2008.

[9] J. Xie, J. He, and P. K. Meher, “Low

latency systolic montgomery multiplier

for finite field GF(2m) based on

pentanomials,” IEEE Trans.Very Large

Scale Integr. (VLSI) Syst., vol. 21, no.

2, pp. 385–389, Feb.2013.

[10] H.Wu, M. A. Hasan, I. F. Blake, and S.

Gao, “Finite field multiplier using

redundant representation,” IEEE Trans.

Comput., vol. 51, no. 11, pp. 1306–

1316, Nov. 2002.

[11] A. H. Namin, H. Wu, and M. Ahmadi,

“Comb architectures for finite field

multiplication in ,” IEEE Trans.

Comput., vol. 56, no. 7, pp. 909–916,

Jul. 2007.

[12] A. H. Namin, H. Wu, and M. Ahmadi,

“A new finite field multiplier using

redundat representation,” IEEE Trans.

Comput., vol. 57, no. 5, pp. 716–720,

May 2008.

[13] A. H. Namin, H.Wu, and M. Ahmadi,

“A high-speed word level finite field

multiplier in using redundant

representation,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol.

17, no. 10, pp. 1546–1550,Oct. 2009.

[14] A. H. Namin, H. Wu, and M. Ahmadi,

“An efficient finite field multiplier

using redundant representation,”

ACMTrans. Embedded Comput. Sys.,

vol. 11, no. 2, Jul. 2012, Art. 31.

[15] North Carolina State University, 45 nm

FreePDK wiki [Online].

Available:http://www.eda.ncsu.edu/wiki

/FreePDK45:Manual

