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        ABSTRACT : 

 
This paper presents a practical design of an intelligent type of controller using 

polynomial neural network (PNN) concepts for excitation control of a practical 

power generating system. This type of controller is suitable for real time operation 

and aims to improve the dynamic characteristics of the generating unit by acting 

properly on its original excitation system. The modelling of the power system under 

study consists of a synchronous generator connected via a transformer and a 

transmission line to an infinite bus. Next, digital simulations of the above system 

are performed using fuzzy control techniques that are based on previous work. 

Then, two neural network controllers are designed by adopting the PNN 

architecture. The first one utilizes a single pi-sigma network (PSN) and the 

significant advantages over the standard multi layered perceptron (MLP) are 

discussed. Secondly, an enhanced controller is designed, leading to a ridge 

polynomial network (RPN) by combining multiple PSNs if needed. Both 

controllers used can be pre-trained rapidly from the corresponding fuzzy logic 

controller (FLC) output signal and act as model dynamics capturers. The dynamic 

performances of the FLC along with those of the two proposed controllers are 

presented by comparison using the integral square error criterion (ISE). The latter 

controllers show good convergence properties and accuracy for function 

approximation. Typical transient responses of the system are shown for comparison 

in order to demonstrate the effectiveness of the proposed controllers. The computer 

simulation results obtained demonstrate clearly that the performance of the developed 

controllers offers competitive damping effects on the generator oscillations, with 

respect to the associated ones of the FLC, over a wider range of operating conditions, 

while their hardware implementation is easier and the computational time needed 

for real-time applications is drastically reduced. 

K e y w o r d s:  Synchronous machine, excitation control, dynamic stability, 

polynomial neural networks 

List of symbols 

 
 
δ load angle 

t time 

ifd field current 

id, iq stator currents in d and q axis circuits, respec- tively 

it machine terminal current 

ufd field voltage 

ud, uq stator voltages in d and q axis circuits, respec- tively 

Ub busbar voltage 

ut machine terminal voltage 

Pm generator-shaft mechanical power 
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RT , XT   transformer resistance and reactance 

RL, XL transmission  line resistance and reactance ikd, ikq damper circuit currents in d and q  

axes ω machine speed 

Ke, Te exciter gain and time constant ∆Uref incremental (step) voltage reference (input) chang 

 

ue excitation error 

            ue.c.s excitation controller voltage signal 
S Laplace operator 

r plant reference operating set point 

y plant output 

 

1   INTRODUCTION 

 

The problem of power system dynamic stability has re- 

ceived growing attention over the last decades. The main 

reasons for this are the increasing size of generating units 

and the use of high-speed excitation systems. The effect 

of the high-speed excitation on dynamic stability is to add 

negative damping to the system thereby causing oscilla- 

tions with weak damping. A design of such an excitation 

system should also be satisfactory for a wide range of 

operating conditions as well as for fault conditions. Prac- 

tical methods for nonlinear control include an open-loop 

inverse model of the nonlinear plant dynamics and the use of 

feedback loops to cancel the plant nonlinearities. The 

approximation of a non-linear system with a linearized 

model yields to the application of adaptive control, where 

real-time measurements of the plant inputs are used, ei- ther 

to derive explicitly the plant model or design a con- troller 

based on this model (indirect adaptive control), or to 

directly modify the controller output (direct adaptive 

control). Typical studies concerning applications of mod- 

ern algebraic and optimal control methods in excitation 

controller design using linear system models and output 

feedback have been presented before, eg [1–3]. 

Fuzzy approaches to intelligent control schemes treat 

situations where some of the defining relationships can be 

described by fuzzy sets and fuzzy relational equations [4– 7]. 

Fuzzy logic controllers (FLCs) constitute knowledge- based 

systems that include fuzzy rules and fuzzy member- ship 

functions to incorporate human knowledge into their 

knowledge base. Some studies concerning applications in 

excitation controller design using fuzzy set theory have been 

developed before [5, 7-9]. 

Most knowledge-based systems rely upon algorithms that 

are cumbersome to implement and require exten- sive 

computational time. Fuzzy logic provides an infer- ence that 

enables approximate human reasoning capa- bilities to be 

applied to knowledge-based systems. The combination of 

fuzzy logic and artificial neural networks (ANNs) theory for 

excitation control purposes has also been presented before 

[7–8], due to the ability of an ANN to become a universal 

function approximator [10]. Neu- ral net based control 

possesses the ability to generalize learning. Moreover, it has 

been considered as the fastest among presently used 

approaches. 

The aim of this paper is to investigate the use of PNN as a 

replacement of an existing (designed previously) FLC, 

applied in the excitation part of a practical syn- chronous 

machine workbench system. The first type of the PNN used is 

called pi-sigma network. This network utilizes product cells as 

the output units to indirectly in- corporate the capabilities of 

higher-order networks, while using a fewer number of weights 

and processing units. The motivation here is to develop a 

systematic type of controller which maintains the fast learning 

property of single-layer higher-order networks, while avoiding 

the ex- ponential increase in the number of weights and 

process- ing units required. The network has a regular 

structure, exhibits much faster learning, and is amenable to the 

in- cremental addition of units to attain a desired level of 

complexity. If such an incremental addition of units takes 

place a ridge polynomial network is produced. The second 

controller proposed here refers to this kind of architec- ture. 

Simulation results show good convergence proper- ties and 

accuracy for function approximation. Compara- tive results 

using a FLC output training data set are also provided to 

highlight the learning, and subsequently con- trol, abilities of 

the proposed PSN and RPN controllers. 

At first, digital simulations of the above system are 

performed with FLC controller based on previous works by 

the authors of this model under various disturbance conditions 

[8]. Next, a new effort is made on the design and simulation of 

the higher-order neural network con- trollers. The new results 

are compared with those of the FLC. The overall evaluation of 

the proposed PSN and RPN controllers is made through the 

ISE criterion. 

The computer simulation results obtained over a num- ber of 

simulations clearly illustrate that there are poten- tial 

capabilities of this proposed approach. From a prac- tical 

point of view, the required computational time is reduced 

while the hardware implementation is quite eas- ier than a 

FLC. It is also demonstrated that the perfor- mance of the 

two developed controllers will offer compet- itive damping 

effects on the generator oscillations over a wider range of 

operating conditions, with the associated ones of the FLC 

design. 
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2 SYNCHRONOUS 

MACHINE MODEL 

UNDER STUDY 

 

The power system model to which the new PSN and 

RPN controllers designs are applied consists of an 87.5kVA 

alternator-set model connected via a trans- former and 

transmission line to an infinite bus, is taken from [3] and is 

shown here in Fig. 1. The machine model was selected to 

have parameters broadly typical of those associated with 

larger machines. This approach can facili- tate hardware 

changes as required and allows for practical tests to be 

carried out without disruptions in main gen- erator sources. 

The main parameters for this machine are given in [3], but 

for practical purposes are stated also in the Appendix A. 

It is readily seen that the per-unit reactances are 

representative of turbogenerators in the range of 20– 30 

MW. The linearized system equations in standard state-space 

differential form are 

 

ẋ  = Ax + Bu ,  y  = Cx (1) 

 
where x     R

n
 , y     R

m
 and u     R

p
 are the state, output 

and input vectors respectively, and A, B and C are real 
constant system matrices of appropriate dimensions. 

 

3 RELEVANT WORK 

PREVIOUSLY 

DEVELOPED 

 

 Conventional control 

 

Based on [3] the non-transformed state-space model of the 

synchronous machine in the form of Eq. (1), is 

 
x

T
 = [ id  iq  ifd  ikd  ikq  δ   ω ] , u

T
 = [ ufd  Pm ] (2) 

 

where the explicit numerical values of A and   B [3] are 

based on the specific operating point given in Ap- pendix A. 

In the same work, a 1st -order differential equa- tion, 

describing the conventional exciter was introduced first and 

the 8th -order transformed open-loop model was derived. 

After that, based on the output energy criterion, the above 

model was re-arranged in decreasing order of state variable 

participation in the output energy of the system and after a 

relevant eigenvalue evaluation a sat- isfactory reduced order 

open-loop model ( 4th -order) was obtained. When output 

feedback was applied to the re- arranged 8th -order open-

loop model, a gain vector was 

 

 
 

 

 

 

  
  

 

 

 

Fig. 1. Simplified representation of synchronous machine plus exciter supplying power to the electric utility system through an intercon- 

nection network [3]. 

 

obtained resulting to an 8th -order transformed closed- loop 

model as well as to its associated reduced 4th - order model. 

Finally, the 8th -order transformed open- loop model was 

combined with the designed controller of the latter 4th -order 

closed-loop model to give an 8th - order transformed closed-

loop model that resulted in im- proved overall performance. 
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Fig. 2. Structure of previously designed Fuzzy Logic 

Controller (FLC) [8]. 

 

 
 Fuzzy Logic Control 
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Based on [8], the basic configuration of the designed 
0 
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FLC comprises the four principal components: fuzzifica- - p
e
 

e e e 

1 2 

tion interface, knowledge base, decision-making logic, and 

defuzzification interface (Fig. 2). The input variables are 

defined as the deviation from a reference or setpoint value, 

called the error ( e ), and its first derivative, which in fuzzy 

control terms is usually called the change in error ( ce ). It 

is found that the use of a third input variable which is the 

te

r

m

in

al 

v

oltage difference ( ∆ut ) helps the FLCL 
 

to display better performance. According to Fig. 1 and – pce 

 
– pce 

 

ce ce 

1 2 

Fig. 2 the input variables are defined as: 

 
e(t) = ∆Uref − K1δ(t) − K2it(t) − K3ut(t) − K4ufd(t) 

Input variable ce 

 
NL NS ZR PS PL 

1 

ce(t) = ∆e(t)/∆t = [e(t) − e(t − 1)] Ts 

∆ut(t) = ut(t) − ut(t − 1) 

(3) 
0.5 

 
0 

 

 

 
 

-1 -0.625 -0.125   0.125 0.625 1 

– p∆ut 
– p∆ut ∆ut 

1 

∆ut 

2 

where Ts is the sampling time. The FLC output variable, 

which is the control input of the excitation system, is the 

field voltage ufd . 

Input variable ∆ut 

 

Fig. 3. Membership functions of the (normalized) input fuzzy 

vari- ables 

 

Next, the fuzzy set values of the input and output fuzzy 

variables are specified. With respect to a robust realization five 

fuzzy sets are defined for each linguis- tic (input and output) 

variable. The fuzzy set values of the fuzzy variables are 

chosen as follows: NL (Nega- tive Large), NS (Negative Small), 

ZR (Zero), PS (Posi- tive Small), PL (Positive Large) for the 

input variables, and VL (Very Large), (L) Large, (NR) Normal, 

VS (Very Small), S (Small) for the output variable. The input 

fuzzy variables, with their respective fuzzy set values, are shown 

in Fig. 3. 

To determine how to modify the control variable ufd from 

the monitored fuzzy input variables, two fuzzy asso- ciative 

matrices (FAM) were established. The synthesized FAMs for 

the FLC are shown in Fig. 4. 
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Fig. 4. Fuzzy associative matrices for the output control variable 

ufd . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 5. Structure of previously designed Fuzzy Logic Neural 

net- work Controller (FLNnC) [8]. 

 

 

3.2.3. Genetic Fuzzy Control 

 

In Fig. 3, the parameters p1 , p2 (coordinates of the 

triangular shaped fuzzy sets) for each fuzzy variable were 

fixed to the values shown above. This could be considered as 

the main drawback of this type of FLC and was im- 

proved by the employment of a genetic algorithm (GA) 

[9]. Since triangular functions are chosen to represent the 

membership function, a fuzzy set’s membership function is 

defined as a base function whose parameters can be adjusted 

adequately to meet the reference profile. The approach that 

could be followed for the base function is defined as 

follows (see Fig. 6): 
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Fig. 6. A method for fuzzy set coefficient adjus

3.2.2. Fuzzy Neural Control 

 

 
Besides the FLC, an artificial neural network (NN) was 

employed also in [8] as a replacement for the plant dynamics 

evaluation inside the model-based control algo- rithm and 

the resulting neural network part along with 

 
f (x : αi, βi, γi) = 0 ; αi ≥ x 

f (x : αi, βi, γi) = (x − αi)/(βi − αi); αi ≤ x ≤ βi 

f (x : αi, βi, γi) = (x − γi)/(βi − γi) ; βi ≤ x ≤ γi 

f (x : αi, βi, γi) = 0 ; x ≥ γi 

 

 

 

 
(4) 

the fuzzy logic part gave a new control structure as seen in 

Fig. 5 (FLNnC). The neural network was trained off-line, 

using the input and output of the conventional controller at 

the beginning of the on-line operation, the synapses between 

its neurons gave the same output as the con- ventional 

controller for the same input. As the controller operation 

continued (this was not desirable further) the neural network 

started learning the plant dynamics and also updating itself. 
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× × 

× 

k 

where αi , βi , γi are the parameters. Thus, for each fuzzy set 
the following equations could be used: 

 

αi
′′  = (αi + δi) − ηi 

βi
′′  = (βi + δi) (5) 

γi′′  = (γi + δi) + ηi 

where  δi  and  ηi  were  adjustment  coefficients.  The  

coef- ficient  δi  causes the  

i
th

  membership function to 

move to 

the right or to the left without changing shape. The coeffi- 

cient ηi causes the i
th

  membership function to compress or  

elongate.  The  parameters  δi   and  ηi   had  to  be  opti- 

mised using the GA for each fuzzy subset. In our FLC case, 

there are three control variables with five subsets each. Thus 

the total number of parameters to be opti- mized by the GA 

involved were 3 5 3 = 45 . How- ever, the nature of the 

excitation control problem requires fast response. The above 

achieved number of parameters is large. In order to reduce 

this number of parameters searched by the GA in each time 

instant, a common co- ordinate adjustment for the five fuzzy 

subsets of each of the three fuzzy variables e , ce , δut (see 

Figs. 3 and 6) was employed as follows: 

slowly in typical situations dealing with complex and non- 

linear problems, and do not scale well with problem size 

[12]. 

Higher-order correlations among the input compo- nents 

can be used to construct a higher-order network to yield a 

nonlinear discriminant function using only a single layer of 

cells [13]. The building block of such net- works in the 

higher-order processing unit (HPU), defined as a neural 

processing unit that includes higher-order in- put correlations, 

and its output y , is given in [14]: 

 

y = σ
 Σ

wjxj+
Σ

wjkxjxk+
Σ

wjklxjxkxl+· · ·  
   

(7) 

γ2 = β3 = α4 = 0 

γ5 = −α1 = 1 

 

 
(6) 

j j,k j,k,l 

γ3 = β4 = α5 = α3 = −β2 = −γ1 = 

p1 γ4 = β5 = −α2 = −β1 = p2 

Finally, the total number of parameters was reduced to 

3 2 = 6 which turned out to be highly practical. The 

dynamic subsystems, ie the power system, the Fwhere 

σ(x) is a nonlinear function of input x, xj is the j
th

  

component  of  x,  and  wjkl...  is  an  adjustable  weight from 

product of inputs xj , xk , xl . . . to the HPU. If the input is of 

dimension N , then a k
th

 order HPU needs a total of 

and the GA, are interfaced with each other to form the 

overall genetic fuzzy controller (GFC) employed as shown in 

Fig. 7. 

Σ

i=

0 

 
N + i − 1

 
 

 

 
(8) 

 

 

 
 

Genetic      

Algorithm 

y 

Plant 

Data 

Base 
u 

∆ut Fuzzifier 
Inference 

Engine 
Defuzzifier 

r 
ce Fuzzifier 

- 
+ 

e Fuzzifier Rule 
Base 

i 



 

 

 

Volume 11, Issue 12, DEC 2021                   ISSN 2457-0362                                                        Page 131 
 
        

Fig. 7. Structure of previously designed Genetic Fuzzy Controller (GFC)[8]. 

 

 

 
 

4 THE PROPOSED POLYNOMIAL NETWORK CONTROLLERS 

 

 Higher-Order Feedforward Networks 

 

Multi-layered perceptron (MLP) networks using the backpropagation learning rule or its variants have been successfully 

applied to applications involving pattern clas- sification and function approximation as well as con- trol schemes of power 

systems [8, 11]. Unfortunately, the training speeds for multi-layered networks are extremely slower than those for feedforward 

networks being com- posed of a single layer of threshold logic units (TLU), and using the perceptron, ADALINE or Hebbian 

type learn- ing rules [12]. Moreover, these networks converge very weights if all products of up to k ≤ N components 

are to be incorporated [15]. 

A single layer of HPU (SLHPU) network is one in which only one layer of mapping from input to output using HPUs is 

considered. The order of a SLHPU net- work is the highest order of any of the constituent HPUs. Thus output of the k
th

 order 

SLHPU is a nonlinear func- tion of up to the k
th

 order polynomials. Since it does not have hidden units as in sigma-pi 

network, reliable sin- gle layer learning rules such as perceptron, ADALINE, or Hebbian type rules can be used. However, to 

accommo- date all higher-order correlations, the number of weights required increases combinatorially in the dimensionality 

of the inputs [15]. Limiting the order of the network leads to a reduction in the classification capability of the net- work. 

There have been many approaches that maintain the powerful discrimination capability of higher-order net- works while 

reducing higher- order terms. For exam- ple, sigma-pi networks use a hidden layer of higher-order TLUs [12]. A multi-

layering strategy using sigma-pi units retains the full capability of a higher-order network using a smaller number of weights 

and processing units, but its learning speed is slower due to layering. Another approach is to use a priori information to 

remove the terms that are irrelevant to the problem in a single layer of higher- order TLUs [13],[16]. However, since it is 

often difficult to find the properties of input pattern space a priori, this strategy has limited applications. 
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Fig. 8. (a) Proposed Pi-Sigma network (PSN) controller architecture, (b) Standard MLFF neural network architecture. 

 

 Pi-Sigma Network Architecture 

 

Figure 8(a) shows the proposed PSN controller for the 

present work. The input x is an N dimensional vec- tor 

and xk is the k
th

 component of x. The inputs are 

weighted and fed to a layer of K linear summing units, 

where K is the desired order of the network. Let hji be the 

output of the j
th

 summing unit for the i
th

 output, yi , 

then, 

hji = 
Σ 

wkjixk + Θji,  and  yi = σ
 Y 

hji

  
(9) 

 

  

where   wkji   is  an  adjustable  weight  from  input   xk   to 

the j
th

 summing unit of  the  i
th

 output,  and  Θji is an 

adjustable threshold of the j
th

  summing unit of the i
th

  

output. The  σ(x)  denotes the nonlinear activation 

function, and is selected as the logistic function, σ(x) = 1
, 

1+e
−x

  
for all the results reported in this paper. Note 

that connections from summing units to an output have fixed 

weights. Thus there is no notion of hidden units in the 

network and fast learning rules can be used. 

The basic idea behind this type of network is that we can 

represent the input of a K
th

 order processing unit by a 

product of K linear combinations of the input com- ponents 

[17]. That is why this network is called pi-sigma instead of 

sigma-pi (Fig. 8(b)). In the SLHPU represen- tation, the 

polynomial is represented by summation of all partial 

products of input components up to order K , 

 
of adjustable weights required, as indicated in Table 1. From 

the network topology point of view, this leads to an 

irregular structure. In the case of the PSN, using an 

additional summing unit increases the network’s order by 1 

while preserving old connections and maintaining net- work 

topology.

thereby leading to an exponential increase in the number 
j k 
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Fig. 9. Proposed Ridge Polynomial Network (RPN) controller 

architecture 

 

 

Table 1. Number of weights required for PSN and 

SLHPU 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For x = (x1, . . . , xd)
T and w = (w1, . . . , wd)

T ∈ R
d
 , 

the ⟨x, w⟩ is denoted as their inner product. For a given 

compact set C ⊂ R
d
 , all functions defined on C in the 

functions. A ridge polyno- mial is a ridge function that can 

be represented as 
 

n m 

aij⟨x, wij⟩i (13) 

i=0 j=1 

for some aij ∈ R and wij ∈ R
d
 . 

 Probabilistic Learning Rule Used in the PSN 

 

There are a total of (N + 1)K adjustable weights and 

Let Πd denote the set of all polynomials in R
d
 with 

degree ≤ k . Then, for any polynomial p(x) in Πd , there exist  

wji ∈ R  and  wji ∈ R
d
  such  that, 

thresholds for each output unit, since there are N + 1 N j 

weights associated with each summing unit. The learning 

rule is a randomized version of the gradient descent pro- 

cedure. Since the output  yi is a function of the product of 

all the hji ’s, we do not have to adjust all the variable weights 

at each learning cycle. Instead, at each update step, we 

randomly select a summing unit and update the set of N + 1 

weights associated with its inputs based on a gradient 

descent approach. Let the mean square error (MSE) be 

e
2
 = 

1 Σ Σ 
d

p
 − y

p
  2 

(10) 
 

  

where superscript p denotes the p
th

 training pattern, di and 

yi are the i
th

 components of desired and actual out- puts, 

respectively, and the summation is over all outputs and all 

training patterns. Applying gradient descent on this 

estimate of the MSE, we obtain the update rules for weights 

and threshold for each iteration step as 

∆Θli = η(di − yi)yi
′ 
Y 

hji (11) 

i p 

RPN overall output 

Sum 
yi 

Fixed weights 1 1 1 

Prod   output #1 yi 
Prod   output #2 yi 

   Prod output #Q yi 

1 1 1 1 1 1 1 1 1 

Sum    Sum Sum Sum Sum    Sum Sum Sum        Sum    Sum Sum Sum 
h1 h2 hj hK h1 h2 hj hK+1 h1 h2 hj hK+Q 

1 2 j K 1 2 j K+1 1 2 j K+Q 

wkji wkji wkji 

x1 x2 

1 2 

xk 

k N 
xN x1 x2 

1 2 

xk xN 

k N 
   x1 x2 xk xN 

1 2 k N 

order 

of 
network 

# of weights 

Pi-sigma SLHPU 
N = 5 N = 10 N = 5 N = 10 

2 12 22 21 66 

3 18 33 56 286 

4 24 44 126 901 
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Y 

∈ ∈ 

p(x) = ⟨x, wji⟩ + wji (14) 
j=1 

i=1 

 

The original form of the theorem is more complicated 

that the one presented here. However, since we are con- 

cerned with the existence of a representation of multivari- ate 

polynomials in terms of ridge polynomials, a simpler 

statement is adopted. The detailed proof can be found in 

[18]. 

Figure 9 shows the generic network architecture of the 

RPN using the PSN as basic building blocks. Since, 

 
about the function to be approximated, it is difficult to 

choose an appropriate network size. On the other hand, an 

RPN can be incrementally grown to meet a predefined error 

criterion. 

 

4.3.1 Incremental Learning Algorithm Used in 

the RPN 

 

Instead of limiting the activation functions to linear 

j i ones, we can use activation functions such as sigmoid or 

hyperbolic tangent. Thus, using a fixed network architec- 
∆wkli = η(di − yi)yi

′ hjixk  = ∆Θlixk (12) 
j /=i 

 
where η is the scaling factor or the learning rate, and 

ture, an unknown function f in R
d
 can be approximated by 

the direct use of the RPN model of degree up to k based 

on 

y
′
 is the first derivative of the logistic function that is, k 

i   
yi

′ = σ′
(x) =  1 − σ(x)  σ(x). It is repeated that these up- f (x) ≈ σ

  Σ 
Pi

 
x

 
(15) 

dates are applied only to the set of weights and threshold 

corresponding to the l
th

 summing unit which is chosen 

randomly at each step 

 Ridge Polynomial Network Architecture 

 
The PSN provides only a constrained approximation of a 

power series. Because of this truncated approxima- tion 

capability, the PSN can not uniformly approximate all 

continuous multivariate functions that can be defined on a 

compact set. However, universal approximation can be 

attained by summing the outputs of several PSN of 

different order. The resulting combined network of PSN is 

called ridge polynomial network 

 

Pi

 
x
 
= 

Y ⟨wj , x⟩ + wj0

  
,   i = 1, . . . , k (16) 

 

 

and σ(·) is a suitable linear or nonlinear activation func- 

tion,  wj      R
d
  and  wj0      R  are  determined  by  learning 

process. Since each Pi in Eq. (15) is obtainable as the 

output of a PSN of degree  i with linear output units, the 

learning algorithms for the PSN can be used for the RPN. 

Equipped with suitable error measure (eg MSE), every 

Pi is optimized by fixing other polynomials. 

 

 

 

 

 

 

 

 

 
where 
i=1 

 

 

             
 i 

j=1 

in general, there may not be much a priori information 
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 Σ 

. 
Table 2. Disturbance Cases Applied to Power System Under 

Study 

 

 

 

 

 

 

An incremental learning algorithm proceeds as follows. 

We denote k  an algorithmic step at which Pk  is added to 

the network with “predetermined” P0, . . . , Pk−1 . That is, 

with P0    0 , the function f is approximated by the RPN at 

the k
th

 step as, 

f (x) ≈ σ 

k−1 

 
i=

0   

Pi(x) + Pk(x)
 

 

 
(17)

Case 

No 

∆ue 

(pu) 

At time 

instant (sec) 

Change in ∆ue (pu) 

At time 

instant (sec) 

A 0.0010 0.0 – – 

B 0.0010 0.0 0.002 4.0 

C 0.0020 0.0 – – 

D 0.0020 0.0 0.002 4.0 

E* 0.0015 0.0 0.002 4.0 

F* 0.0005 0.0 0.004 4.0 
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i=0 

Σ◦ − 

where 

the 

weights 

in P0, . . 

. , Pk−1 . 

are 

frozen 

once the 

k
th

 

degree 

PSN is 

added. 

This is 

equivale

nt to 

approxi

mating 

σ−1
 f 

(x) 
k−1

 

Pi(x) 

with a 

k
th

 

degree 

PSN, 

Pk(x), 

with 
linear 
output 
units. 
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Fig. 12. Time responses of field voltage ufd when FLC and RPN are applied. (A) through (F) are the corresponding cases of 

disturbance (Table 2). 
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Fig. 13. Time responses of terminal voltage ut when FLC and RPN are applied. (A) through (F) are the corresponding cases of 

disturbance (Table 2). 

 

5 APPLICATION AND SIMULATION 

RESULTS 

 

The designed new PSN and RPN controllers are ap- plied 

to the power system of Fig. 1 and several cases of interest 

have been investigated. Some of the cases stud- ied, the 

results of which are shown here, are summarized in Table 2. 

For these cases of disturbance, the FLC model was also 

simulated under the same conditions in order to compare the 

results with the associated ones of the PSN and RPN 

controllers. 

For Cases A through D the FLC input ( e(t),  ce(t) , 
∆u(t)) and output ( ufd ) signals was used to train the two 
proposed controllers. To show the capability of the 

learning algorithms used, the PSN as well as the RPN 

were not trained at all for the Case E and Case F, but the 

final weights of Case D were used instead. In the other 

Cases, the initial weights were randomly assigned values 

between 0.5 and 0.5 for all the PSNs used. The learning 

rate was held constant for a PSN but decreased by a factor of 

1.7 if another PSN was added. A new PSN was added if 

the ratio of the difference between MSEs of the previous 

epoch and the current epoch and the MSE of the previous 

epoch was less than a threshold, εth . Since the dynamic range 

of the error between the desired output and the actual 

algorithm output becomes smaller as learning proceeds, εth 

was decreased by a factor of 
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the quality performance of the relevant controller designs. The 

results are summarized in Table 3. 
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Table 3. Performance index (Eq. 18) of applied controllers 
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Fig. 14. MSE for the PSN and the RPN training phases (Cases 

A through D). 

 

 

 
10 at each addition of a PSN. In case of a RPN used, the 

training started with a 3rd degree PSN. The initial learning 

rate and εth were 0.8 and 0.0001 respectively. The learning 

was quite stable and the MSE decreased drastically when 

additional PSNs were added. 

Figures 10 and 11 show the time responses of the field 

voltage ( ufd ) and the controlled variable ( ut ) respec- tively, 

when FLC and PSN are applied, whereas Figs. 12 and 13 

show the corresponding responses when FLC and RPN are 

applied for the disturbance Cases of Table 2. From these 

figures it is clear that the PSN and RPN per- formance 

competes the associated ones of the FLC. That proves the 

ability of these type of networks to capture the dynamics 

of the system they control (as can be seen from Figs. 10 and 

12), not only for cases that they are trained for (ie Case A 

through D) but also for a wider operating region (Case E and 

F). Consequently, the rel- ative improvement of the system’s 

dynamics regarding the controlled variable is readily seen in 

Figs. 11 and 13. Apparently, the developed controllers show 

good conver- gence properties and accuracy for function 

approxima- tion while their performance offers competitive 

damping effects on the generator oscillations, with respect to 

the associated ones of the FLC. It is to be noted that the FLC 

and PSN/RPN controllers have quite the same character- 

istics due to the fact that the FLC was used to train the 

PSN/RPN ones. The MSE for the cases that the PSN and 

RPN are trained from the FLC input and output variables are 

shown in Fig. 14. It can be seen that the RPN (with one 

or two more PSN blocks) can be trained quite faster and in 

a more stable manner than the sin- gle PSN type. Finally, 

the integration-square-error-time (ISET) criterion of the 

following form is used to evaluate 

 

 
6   CONCLUSIONS 

 

In this paper two implementations of excitation con- 

trollers for a synchronous machine using polynomial neu- ral 

networks were developed and presented. The proposed 

controllers demonstrate robust stability properties, since their 

training is based on a fuzzy sub-system which takes the 

actual operating conditions into consideration. The results 

obtained amply demonstrate that the performance of the PSN 

as well as the RPN controllers are competitive with those 

obtained with the fuzzy logic excitation con- troller designs 

and techniques previously developed. It is evident that 

certain intelligent control applications could increase the 

efficiency and subsequently make the opera- tion of a power 

system more economic. It is emphasized that the hardware 

implementation for such kind of con- trollers is easier than 

FLC ones and the computational time needed for real-time 

applications is drastically re- duced. A practical 

implementation on a microprocessor system could be used as 

an addition to the existing con- trollers of such power 

systems or as a substitute for an optimum control and 

supervision. 

 

Appendix A 

 
Principal system data & machine operating point 
(pu values on machine rating) 

Synchronous Machine xd 1.758 pu Ra 0.01450 pu 

87.5 kVA, 415 V, xq 0.990 pu Rkd 0.00422 pu 

4-pole xfd 1.761 pu Rkq 0.01260 pu 
 xkd 1.664 pu Rfd 0.00268 pu 
 xkq 0.955 pu H 1.434 s 
 xmd 1.658 pu   

 xmq 0.899 pu   

Conventional Exciter Ke 1  Te 0.472 s 

Transformer RT 0.03630 pu XT 0.0838 pu 

Transmission line RL 0.03744 pu X

L 

0.3903 pu 

 
 

Case A 

Case B 

Case C 

Case D 

Case FLC PSN RPN 

A 0.15950 0.15795 0.15705 

B 0.17783 0.17751 0.17447 

C 0.18289 0.18249 0.18097 

D 0.20121 0.20118 0.19999 

E 0.19060 0.18965 0.18948 

F 0.18822 0.18092 0.17696 
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Pt Qt ut ufd δ Ub  

0.8 pu   0.84 pu    1.29 pu    0.0043 pu    0.56 rad    0.97 pu 
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