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ABSTRACT 

Recent studies have shown that a noticeable percentage of web search traffic is about 

social events. While traditional websites can only show human-edited events, in this paper we 

present a novel system to automatically detect events from search log data and generate 

storyboards where the events are arranged chronologically. We chose image search log as the 

resource for event mining, as search logs can directly reflect people’s interests. To discover 

events from log data, we present a Smooth Nonnegative Matrix Factorization framework 

(SNMF) which combines the information of query semantics, temporal correlations, search logs 

and time continuity. Moreover, we consider the time factor an important element since different 

events will develop in different time tendencies. In addition, to provide a media-rich and visually 

appealing storyboard, each event is associated with a set of representative photos arranged along 

a timeline. These relevant photos are automatically selected from image search results by 

analyzing image content features. We use celebrities as our test domain, which takes a large 

percentage of image search traffics. Experiments consisting of web search traffic on 200 

celebrities, for a period of six months, show very encouraging results compared with handcrafted 

editorial storyboards. 

 

I. INTRODUCTION 

As social creatures, people are by nature 

curious about others’ activities. Information 

on famous persons have often been of 

particular interest. This tendency has 

remained true in the internet era [35]. Since 

common search engines as well as news 

websites often experience massive search 

demands about a myriad of current affairs, a 

great amount of news and events are 

collected from the web. However, most 

social events originate from professional 

editors. In this case, it is quite meaningful to 

detect such events for users automatically 

instead of manual efforts. 

Current search engines often show the 

summaries of famous persons as a simple 

profile. From such a summarization, people 

can easily get a celebrity’s basic information 

like portrait, nationality, birthday, 

representative works, and awards. The 

search engine summaries can be considered 

a concentrated  
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version of a person’s larger relevant event 

collection. Although such a short profile is 

very helpful for quickly introducing a 

person, it cannot satisfy people’s curiosity 

for more detailed and timely information of 

celebrities. By contrast, some professional 

websites provide comprehensive and upto- 

date information on famous persons. Fig. 1 

shows a screen shot of www.people.com, a 

website well-known for celebrity news and 

photos. In the marked region of Fig. 1, it 

shows Britney Spears’s recent news (events) 

arranged along a timeline. 

This is a very nice feature for fans to trace 

their idols’ activities. Almost all these 

websites are powered by human editors, 

which inevitably leads to several limitations. 

First, the coverage of human center domains 

is small. Typically, one website only focuses 

on celebrities in one or two domains (most 

of them are entertainment and sports), and to 

the best of our knowledge, there are no 

general services yet for tracing celebrities 

over various domains. Second, these 

existing services are not scalable. Even for 

specific domains, only a few top stars are 

covered1, as the editing effort to cover more 

celebrities is not financially viable. Third, 

reported event news may be biased by 

editors’ interests. In this paper, we aim to 

build a scalable and unbiased solution to 

automatically detect social events especially 

related to celebrities along a timeline. This 

could be an attractive supplement to enrich 

the existing event description in search 

result pages. In this paper, we will focus on 

those events happening at a certain time 

favored by users as our celebrity-related 

social events. 

 
Meanwhile, about 30% of search queries 

aim to search for real-world events 

according to statistics from a commercial 

search engine data [23]. A further-70% of 

these queries are related to celebrities, 

including artists, sports stars, politicians, 

scientists, entrepreneurs, et al. Thus, we will 

focus on events related to celebrities because 

of the volume of related search queries and 

the ability to obtain ground truth events 

from professional websites. 
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II. EXISTING SYSTEM 

In the existing system, web search log is 

another data source which has attracted the 

interests of many researchers. Search log data 

contains useful information like user queries 

and clicked search result URLs. It has been 

successfully exploited in various areas like 

relevance ranking, query expansion and query 

alternation. Besides, search log data is an 

unbiased statistic showing user intention. It is 

therefore a good resource for event detection, 

especially for those events attracting the 

interests of internet users.  

Zhao et al. [40] and Liu et al. [21] have 

done lots of work in this area. In [40], a 

bipartite graph is constructed based on query 

and click URL pairs, and two similarity 

measurements are proposed for event 

clustering. 

Disadvantages 

There is no Event story board to generate 

group images to gather. It is only fuzzy 

keyword Search Scheme and not based on 

story board. 

III. PROPOSED SYSTEM  

The system proposes a novel framework 

to detect interesting events by mining users’ 
search log data. The framework consists of 

two components, i.e., Smooth Non-Negative 

Matrix Factorization event detection and 

representative event related image photo 

selection.  

The systems have conducted 

comprehensive evaluations on large scale 

real-world click through data to validate the 

effectiveness. 

 

 

Advantages 

The images are generating based on non-

negative matrix factorization. The image click 

more easy due to SNMF Topic Factorization. 

IV. MODULES 

4.1 Admin 

In this module, admin has to login with valid 

username and password. After login 

successful he can do some operations such 

as ,View all users and authorize,give click 

option to view all users locations in GMap 

using Multiple Markers,View all Friend 

Request and Response ,Add images to 

Storyboard with image cat,image 

name,image desc(enc),image 

users,URL,Add Image ,View all images 

with date and time, with rank,reviews 

,Generate Matrix Factorization to detect 

event(see below),View search key request 

and generate using RSA ,View Storyboard 

request and Authorize ,View all user Search 

keyword transactions,view all images rank 

in chart 

4.2 User 

In this module, there are n numbers of users 

are present. User should register before 

doing some operations and also add your 

location while registration .  After 

registration successful he can login by using 

valid  user name and password and location. 

After Login successful he will do some 

operations like ,Search Friend  and Find 

Friend Request ,View all Your Friends and 

give click option to view all users locations 

in GMap using Multiple Markers show 

Route path using GMAp,Request Search key 

for search and view the same,Auto fill 

Search key and enter Search keyword,view 
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all images with imagename,rank and click 

on image or image name to view similar 

images in StoryBoard and click on specified 

image to view its details,click URL to visit 

corresponding website,Request Storyboard 

to view in Matrix Formation and view story 

board if it is authorized,View Friends 

Reviews on images in Storyboard 

V. SCREENSHOTS 

 

 

 

 

 

 

 

 

 

 

 

VI CONCLUSIONS 

In this paper, we use search logs as 

data source to generate social event 

storyboards automatically. Unlike common 
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text mining, search logs have short, sparse 

text queries and the data size is much bigger 

than some news websites or blogs. Based on 

these features, we do not use the query text 

information to do the analysis. Structure and 

statistic information are used to get the 

topics and event detection in our work, 

which can fit the data well. Furthermore, we 

add time information in our approach to 

SNMF to make it easier to discover social 

events compared with traditional NMF 

methods. Our work performs better than 

traditional works in this area, e.g. [40], 

because we can distinguish the topics in a 

way that gets the events which are most 

appealing to common users. The associated 

images were selected to make up the 

storyboard in a timeline to present a good 

representation of the mined events using the 

image search results features and 

relationships. 
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