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ABSTRACT 

 

Human life has changed from real-world to 

virtual worlds due to recent advancements in 

computer technology. Malware is 

superfluous software that is frequently used 

to initiate cyberattacks. Advanced packaging 

and obfuscation techniques are still being 

used by malware strains to evolve. These 

methods complicate the categorisation and 

detection of malware. To successfully battle 

emerging malware strains, new methods that 

differ from traditional systems should be 

used. All complicated and novel malware 

strains cannot be detected by machine 

learning (ML) techniques. The deep learning 

(DL) approach may be a viable way to 

identify every kind of malware. In this 

research, the Optimal Ensemble Learning 

Approach for Cybersecurity (AAMD-

OELAC) approach for Automated Android 

Malware Detection is presented. The 

automatic categorisation and detection of 

Android malware is the main goal of the 

AAMD-OELAC approach. The AAMD-

OELAC approach preprocesses data at the 

preliminary stage in order to do this. Three 

machine learning models—the Regularised 

Random Vector Functional Link Neural 

Network (RRVFLN), the Kernel Extreme 

Learning Machine (KELM), and the Least 

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC 

technique's ensemble learning process for 

Android malware detection. Lastly, the three 

DL models' optimal parameter tuning is 

achieved by utilising the hunter-prey 

optimisation (HPO) technique, which also 

contributes to better malware detection 

outcomes. A thorough experimental 

investigation is carried out to demonstrate 

the superiority of the AAMD-OELAC 

approach. The simulation results 

demonstrated the AAMD-OELAC 

technique's superiority over other methods 

already in use. 

 

1. INTRODUCTION  

Network engineers and computer scientists 

are increasingly concerned about cyber 

security, thus finding satisfactory answers to 

a number of issues is necessary [1]. As a 

result, different malware programs and 

targets are well-identified and researched, as 

are the rapid advancements in technology 

and their intrinsic integration into all facets 

of lifestyles [2]. The malware kind that 

attracted the most attention in the online 

community is Android malware. Android is 

a popular operating system that leads the 

market for operating systems [3].  

 

            Malware invasive methods emerge 

for avoiding identification, as few malware 



 

Volume 14, Issue 11, Nov 2024                                 ISSN 2457-0362 Page 9 

 

applications have more than 50 parameters 

that make detection a difficult one [4]. 

Hence, it is essential to devise techniques 

that deal with the continuous growth of 

Android malware to find it, deactivate or 

remove it efficiently. All these difficulties 

engage scholars in the area and urge them to 

continue more research to find malware and 

manage it properly [5]. Thus, researchers 

have developed three mechanisms to find 

Android malware such as dynamic, static, 

and hybrid analysis methods. Static analysis 

extracts the features that assist in identifying 

harmful performance for apps without a 

demanding actual application deployment 

[6]. But this kind of analysis suffered from 

code obfuscation methods which assist help 

malware author to avoid static methods. 

Dynamic analysis can be used for 

determining the malware of apps in their 

runtime [7]. Commonly, the static analysis 

feature offers the capability of locating the 

malware element using source code, while 

the dynamic analysis feature offers the 

capability of finding the location of malware 

in a runtime environment. Android 

developers and users can be exposed to 

unnecessary risks and dangers with malware 

[8]. This study covers malware detection 

methods. The detection of malware using 

the ML model includes Android Application 

Packages (APKs) for deriving an 

appropriate set of features. Deep learning 

(DL) and machine learning (ML) 

approaches can be used for recognizing 

malicious APKs [9]. Like malware 

detection, vulnerability detection in software 

code has two stages: training ML on derived 

attributes to find vulnerable code segments 

and feature generation utilizing code 

analysis [10]. 

  

                   This paper presents an 

Automated Android Malware Detection 

using Optimal Ensemble Learning Approach 

for Cyber security (AAMD-OELAC) 

technique. The AAMDOELAC technique 

performs data preprocessing at the 

preliminary stage. For the Android malware 

detection process, the AAMD-OELAC 

technique follows an ensemble learning 

process using three ML models, namely 

Least Square Support Vector Machine (LS-

SVM), kernel extreme learning machine 

(KELM), and Regularized random vector 

functional link neural network (RRVFLN). 

Finally, the hunter-prey optimization (HPO) 

algorithm is exploited for the optimal 

parameter tuning of the three DL models, 

and it helps accomplish improved malware 

detection results. To indicate the supremacy 

of the AAMD-OELAC approach, a 

comprehensive experimental analysis is 

carried out. In short, the key contributions 

are listed as follows. 

           • An intelligent AAMD-OELAC 

technique comprising data preprocessing, 

ensemble learning, and HPO-based hyper 

parameter tuning is presented for Android 

malware detection. To the best of our 

knowledge, the AAMD-OELAC technique 

never existed in the literature. 

             • Perform ensemble learning-based 

classification process comprising LS-SVM, 

KELM, and RRVFLN models for Android 

malware detection. 

             • The combination of the HPO 

algorithm and ensemble learning process 

improves the detection accuracy of Android 
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malware. By utilizing multiple classifiers 

and optimization strategies, the model can 

effectively identify malicious patterns and 

behaviors in Android applications. 

 

2. LITERATURE SURVEY 

‘‘Adversarial superiority in Android 

malware detection: Lessons from 

reinforcement learning based evasion 

attacks and defenses,’’ 
Today, android smartphones are being used 

by billions of users and thus have become a 

lucrative target of malware designers. 

Therefore being one step ahead in this zero-

sum game of malware detection between the 

anti-malware community and malware 

developers is more of a necessity than a 

desire. This work focuses on a proactive 

adversary-aware framework to develop 

adversarially superior android 

malware detection models. We first 

investigate the adversarial robustness of 

thirty-six distinct malware detection models 

constructed using two static features 

(permission and intent) and 

eighteen classification algorithms. We 

designed two Targeted Type-II Evasion 

Attacks (TRPO-MalEAttack and PPO-

MalEAttack) based on reinforcement 

learning to exploit vulnerabilities in the 

above malware detection models. The 

attacks aim to add minimum perturbations in 

each malware application and convert it into 

an adversarial application that can fool the 

malware detection models. The TRPO-

MalEAttack achieves an average fooling 

rate of 95.75% (with 2.02 mean 

perturbations), reducing the average 

accuracy from 86.01% to 49.11% in thirty-

six malware detection models. On the other 

hand, The PPO-MalEAttack achieves a 

higher average fooling rate of 96.87% (with 

2.08 mean perturbations), reducing the 

average accuracy from 86.01% to 48.65% in 

the same thirty-six detection models. We 

also develop a list of the TEN most 

vulnerable android permissions and intents 

that an adversary can use to generate more 

adversarial applications. Later, we propose a 

defense strategy (MalVPatch) to counter 

the adversarial attacks on malware detection 

models. The MalVPatch defense achieves 

higher detection accuracy along with a 

drastic improvement in the adversarial 

robustness of malware detection models. 

Finally, we conclude that investigating the 

adversarial robustness of models is 

necessary before their real-world 

deployment and helps achieve adversarial 

superiority in android malware detection. 

‘‘You are what the permissions told me! 

Android malware detection based on 

hybrid tactics,’’ 
Recent years have witnessed a significant 

increase in the use of Android devices in 

many aspects of our life. However, users can 

download Android apps from third-party 

channels, which provides numerous 

opportunities for malware. Attackers utilize 

unsolicited permissions to gain access to the 

sensitive private intelligence of users. Since 

signature-based antivirus solutions no longer 

meet practical needs, efficient and adaptable 

solutions are desperately needed, especially 

in new variants. As a remedy, we propose a 

hybrid Android malware detection approach 

that combines dynamic and static tactics. 

We firstly adopt static analysis inferring 

different permission usage patterns 

between malware and benign apps based on 

https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/malware
https://www.sciencedirect.com/topics/computer-science/malware-detection
https://www.sciencedirect.com/topics/computer-science/malware-developer
https://www.sciencedirect.com/topics/computer-science/malware-developer
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/classification-algorithm
https://www.sciencedirect.com/topics/computer-science/reinforcement-learning
https://www.sciencedirect.com/topics/computer-science/reinforcement-learning
https://www.sciencedirect.com/topics/computer-science/adversarial-machine-learning
https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/malware
https://www.sciencedirect.com/topics/computer-science/antivirus-solution
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/static-program-analysis
https://www.sciencedirect.com/topics/computer-science/malware
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the machine-learning-based method. To 

classify the suspicious apps further, we 

extract the object reference relationships 

from the memory heap to construct a 

dynamic feature base. We then present an 

improved state-based algorithm based on 

DAMBA. Experimental results on a real-

world dataset of 21,708 apps show that our 

approach outperforms the well-known 

detector with 97.5% F1-measure. Besides, 

our system is demonstrated to resist 

permission abuse behaviors and obfuscation 

techniques. 

‘‘Metaheuristics with deep learning 

model for cybersecurity and Android 

malware detection and classification,’ 
Since the development of information 

systems during the last decade, 

cybersecurity has become a critical concern 

for many groups, organizations, and 

institutions. Malware applications are 

among the commonly used tools and tactics 

for perpetrating a cyberattack on Android 

devices, and it is becoming a challenging 

task to develop novel ways of identifying 

them. There are various malware detection 

models available to strengthen the Android 

operating system against such attacks. These 

malware detectors categorize the target 

applications based on the patterns that exist 

in the features present in the Android 

applications. As the analytics data continue 

to grow, they negatively affect the Android 

defense mechanisms. Since large numbers of 

unwanted features create a performance 

bottleneck for the detection mechanism, 

feature selection techniques are found to be 

beneficial. This work presents a Rock Hyrax 

Swarm Optimization with deep learning-

based Android malware detection 

(RHSODL-AMD) model. The technique 

presented includes finding the Application 

Programming Interfaces (API) calls and the 

most significant permissions, which results 

in effective discrimination between the good 

ware and malware applications. Therefore, 

an RHSO based feature subset selection 

(RHSO-FS) technique is derived to improve 

the classification results. In addition, the 

Adamax optimizer with attention recurrent 

autoencoder (ARAE) model is employed for 

Android malware detection. The 

experimental validation of the RHSODL-

AMD technique on the Andro-AutoPsy 

dataset exhibits its promising performance, 

with a maximum accuracy of 99.05%. 

‘‘A method for automatic Android 

malware detection based on static 

analysis and deep learning,’’ 
 

The computers nowadays are being replaced 

by the smartphones for the most of the 

internet users around the world, and Android 

is getting the most of the smartphone 

systems’ market. This rise of the usage of 

smartphones generally, and the Android 

system specifically, leads to a strong need to 

effectively secure Android, as the malware 

developers are targeting it with sophisticated 

and obfuscated malware applications. 

Consequently, a lot of studies were 

performed to propose a robust method to 

detect and classify android malicious 

software (malware). Some of them were 

effective, some were not; with accuracy 

below 90%, and some of them are being 

outdated; using datasets that became old 

containing applications for old versions of 

Android that are rarely used today. In this 

paper, a new method is proposed by using 

https://www.sciencedirect.com/topics/computer-science/obfuscation-technique
https://www.sciencedirect.com/topics/computer-science/obfuscation-technique
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static analysis and gathering as most useful 

features of android applications as possible, 

along with two new proposed features, and 

then passing them to a functional API deep 

learning model we made. This method was 

implemented on a new and classified 

android application dataset, using 14079 

malware and benign samples in total, with 

malware samples classified into four 

malware classes. Two major experiments 

with this dataset were implemented, one for 

malware detection with the dataset samples 

categorized into two classes as just malware 

and benign, the second one was made for 

malware detection and classification, using 

all the five classes of the dataset. As a result, 

our model overcomes the related works 

when using just two classes with F1-score of 

99.5%. Also, high malware detection and 

classification performance was obtained by 

using the five classes, with F1-score of 97%. 

 

3. EXISTING SYSTEM 

Shaukat et al. [11] devise a new DL-related 

method for detecting malware. It delivered 

superior outcomes to classical methods by 

merging dynamic and static analysis 

benefits. Firstly, it visualizes a portable 

executable (PE) file as coloured images. 

Secondly, it extracted deep features from 

colour images utilizing fine-tuned DL 

method. Thirdly, it finds malware related to 

the deep features of SVM. Geremias et al. 

[12] presented a method using image-based 

DL called novel multi-view Android 

malware identification, applied threefold. 

Firstly, as per the many feature sets in multi-

view settings, apps were assessed, thereby 

raising the data presented for the 

classification. Secondly, the derived feature 

set is transformed into image formats while 

preserving the essential elements of data 

distribution, keeping the data for the 

classifier task. Thirdly, built images are 

collectively depicted in one shot, all in a 

predefined image channel, allowing the 

implementation of DL structure. 

  

Kim et al. [13] modelled a malware 

detection system called MAPAS that attains 

higher precision and adaptable use of 

computational resources. MAPAS examined 

the performances of malicious apps based on 

API call graphs of them through CNN. 

However, the presented MAPAS technique 

does not utilize a classifier method produced 

by CNN, it uses CNN to find typical 

attributes of the API call graph of malware. 

Fallah and Bidgoly [14] developed a 

technique related to LSTM for detecting 

malware-having the capability of 

differentiating benign and malware samples 

and identifying and detecting unseen and 

new types of malware. In this study, the 

author has executed many studies to show 

the abilities of the presented technique, 

including new malware family detection, 

malware identification, malware family 

identification, as well as assessing the 

minimal time needed to find 

malware. 

 

Sihag et al. [15] introduced DL-based 

Android malware identification with the use 

of DYnamic features (De-LADY), a resilient 

obfuscation method. It has used behavioural 

features from dynamic analysis of an 

application performed in the emulated 

setting. Wang et al. [16] present a hybrid 

method related to DAE and CNN. Firstly, to 
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enhance the precision of malware detection, 

the author reconstructed the high-

dimensional feature of apps and used many 

CNN to find Android malware. Secondly, to 

diminish the training period, the author used 

DAE as a pre-training approach for CNN. 

With the consolidation, DAE and CNN 

method (DAE-CNN) can study flexible 

patterns quickly.  

 

Yadav et al. [17] presented a performance 

comparison of 26 existing pretrained CNN 

methods in Android malware detection. 

Depending on the outcomes, to find Android 

malware, an EfficientNet-B4 CNN-based 

approach was devised with the use of an 

image-based malware representation of the 

Android DEX file. From the malware 

images, EfficientNet-B4 extracted relevant 

attributes. Masum and Shahriar [18] devised 

a DL structure named Droid-NNet, for 

classifying malware. But this technique 

Droid-NNet, is a deep learner that surpasses 

existing cutting-edge ML approaches. Idrees 

et al. [19] examine PIndroid – a new 

Permission and Intents-based structure to 

detect Android malware applications. As we 

know, PIndroid is the primary solution, 

which utilizes a group of permissions and 

purposes supplemented with Ensemble 

approaches for correct malware detection. In 

[20], the authors establish that once the 

concept drift was discussed, permissions 

create long-lasting and effectual malware 

detection methods. Taha and Barukab [21] 

introduce a mechanism for Android malware 

classification utilizing optimizer ensemble 

learning depending on GA. The GA was 

utilized for optimizing the parameter 

settings from the RF technique for obtaining 

the maximum Android malware classifier 

accuracy. Sabanci et al. [22] intended to 

categorize pepper seeds belonging to distinct 

cultivars with CNN techniques. Two 

methods are presented for classification. 

Initially, the CNN approaches (ResNet50 

and ResNet18) are trained for pepper seeds. 

Secondary, diverse in the first, the features 

of pre-training CNN approaches are fused, 

and feature selection has been executed to 

the fused features. In [23], the authors 

examine recent algorithms utilized for 

Android Malware Detection. As a result, an 

outline of the Android system exposed the 

underlying processes and the problems 

facing its security structure. 

 

Disadvantages 

• The complexity of data: Most of the 
existing machine learning models must be 

able to accurately interpret large and 

complex datasets to detect Android Malware 

Detection. 

• Data availability: Most machine learning 
models require large amounts of data to 

create accurate predictions. If data is 

unavailable in sufficient quantities, then 

model accuracy may suffer. 

• Incorrect labeling: The existing machine 
learning models are only as accurate as the 

data trained using the input dataset. If the 

data has been incorrectly labeled, the model 

cannot make accurate predictions. 

4. PROPOSED SYSTEM 

This paper presents an Automated Android 

Malware Detection using Optimal Ensemble 

Learning Approach for Cybersecurity 

(AAMD-OELAC) technique. The 

AAMDOELAC technique performs data 

preprocessing at the preliminary stage. For 
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the Android malware detection process, the 

AAMD-OELAC technique follows an 

ensemble learning process using three ML 

models, namely Least Square Support 

Vector Machine (LS-SVM), kernel extreme 

learning machine (KELM), and Regularized 

random vector functional link neural 

network (RRVFLN). Finally, the hunter-

prey optimization (HPO) algorithm is 

exploited for the optimal parameter tuning 

of the three DL models, and it helps 

accomplish improved  malware detection 

results. To indicate the supremacy of the 

AAMD-OELAC approach, a comprehensive 

experimental  analysis is carried out.  

Advantages 

 

• An intelligent AAMD-OELAC technique 

comprising data preprocessing, ensemble 

learning, and HPO-based hyperparameter 

tuning is presented for Android malware 

detection. To the best of our knowledge, the 

AAMD-OELAC technique never existed in 

the literature. 

 

• Perform ensemble learning-based 

classification process comprising LS-SVM, 

KELM, and RRVFLN models for Android 

malware detection. 

• The combination of the HPO algorithm 
and ensemble learning process improves the 

detection accuracy of Android malware. By 

utilizing multiple classifiers and 

optimization strategies, the model can 

effectively identify malicious patterns and 

behaviours in Android applications. 

 

 

 

 

5. SYSTEM ARCHITECTURE  

 
 

6. IMPLEMENTATION  

Modules 

Service Provider 

In this module, the Service Provider has to 

login by using valid user name and 

password. After login successful he can do 

some operations such as           Train and 

Test Data Sets, View Trained and Tested 

Accuracy in Bar Chart, View Trained and 

Tested Accuracy Results, View Predicted 

Android Malware Detection Details, Find 

Predicted Android Malware Detection Ratio, 

Download Predicted Datasets, View 

Android Malware Predicted Ratio Results, 

View All Remote Users. 

View and Authorize Users 

In this module, the admin can view the list 

of users who all registered. In this, the 

admin can view the user’s details such as, 

user name, email, address and admin 

authorizes the users. 
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Remote User 

In this module, there are n numbers of users 

are present. User should register before 

doing any operations. Once user registers, 

their details will be stored to the database.  

After registration successful, he has to login 

by using authorized user name and 

password. Once Login is successful user 

will do some operations like REGISTER 

AND LOGIN,  PREDICT ANDROID 

MALWARE TYPE, VIEW YOUR 

PROFILE. 

 

7. ALGORITHIMS 

Naïve Bayes 

 

The naive bayes approach is a supervised 

learning method which is based on a 

simplistic hypothesis: it assumes that the 

presence (or absence) of a particular feature 

of a class is unrelated to the presence (or 

absence) of any other feature . 

Yet, despite this, it appears robust and 

efficient. Its performance is comparable to 

other supervised learning techniques. 

Various reasons have been advanced in the 

literature. In this tutorial, we highlight an 

explanation based on the representation bias. 

The naive bayes classifier is a linear 

classifier, as well as linear discriminant 

analysis, logistic regression or linear SVM 

(support vector machine). The difference 

lies on the method of estimating the 

parameters of the classifier (the learning 

bias). 

 

While the Naive Bayes classifier is widely 

used in the research world, it is not 

widespread among practitioners which want 

to obtain usable results. On the one hand, the 

researchers found especially it is very easy 

to program and implement it, its parameters 

are easy to estimate, learning is very fast 

even on very large databases, its accuracy is 

reasonably good in comparison to the other 

approaches. On the other hand, the final 

users do not obtain a model easy to interpret 

and deploy, they does not understand the 

interest of such a technique. 

 

Thus, we introduce in a new presentation of 

the results of the learning process. The 

classifier is easier to understand, and its 

deployment is also made easier. In the first 

part of this tutorial, we present some 

theoretical aspects of the naive bayes 

classifier. Then, we implement the approach 

on a dataset with Tanagra. We compare the 

obtained results (the parameters of the 

model) to those obtained with other linear 

approaches such as the logistic regression, 

the linear discriminant analysis and the 

linear SVM. We note that the results are 

highly consistent. This largely explains the 

good performance of the method in 

comparison to others. In the second part, we 

use various tools on the same dataset (Weka 

3.6.0, R 2.9.2, Knime 2.1.1, Orange 2.0b 

and RapidMiner 4.6.0). We try above all to 

understand the obtained results. 

 

Logistic regression Classifiers 

 

Logistic regression analysis studies the 

association between a categorical dependent 

variable and a set of independent 

(explanatory) variables. The name logistic 

regression is used when the dependent 

variable has only two values, such as 0 and 1 

or Yes and No. The name multinomial 
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logistic regression is usually reserved for the 

case when the dependent variable has three 

or more unique values, such as Married, 

Single, Divorced, or Widowed. Although the 

type of data used for the dependent variable 

is different from that of multiple regression, 

the practical use of the procedure is similar. 

 

Logistic regression competes with 

discriminant analysis as a method for 

analyzing categorical-response variables. 

Many statisticians feel that logistic 

regression is more versatile and better suited 

for modeling most situations than is 

discriminant analysis. This is because 

logistic regression does not assume that the 

independent variables are normally 

distributed, as discriminant analysis does. 

 

This program computes binary logistic 

regression and multinomial logistic 

regression on both numeric and categorical 

independent variables. It reports on the 

regression equation as well as the goodness 

of fit, odds ratios, confidence limits, 

likelihood, and deviance. It performs a 

comprehensive residual analysis including 

diagnostic residual reports and plots. It can 

perform an independent variable subset 

selection search, looking for the best 

regression model with the fewest 

independent variables. It provides 

confidence intervals on predicted values and 

provides ROC curves to help determine the 

best cutoff point for classification. It allows 

you to validate your results by automatically 

classifying rows that are not used during the 

analysis. 

 

 

Decision tree classifiers 

Decision tree classifiers are used 

successfully in many diverse areas. Their 

most important feature is the capability of 

capturing descriptive decision making 

knowledge from the supplied data. Decision 

tree can be generated from training sets. The 

procedure for such generation based on the 

set of objects (S), each belonging to one of 

the classes C1, C2, …, Ck is as follows: 
 

Step 1. If all the objects in S belong to the 

same class, for example Ci, the decision tree 

for S consists of a  leaf labeled with this 

class 

Step 2. Otherwise, let T be some test with 

possible outcomes O1, O2,…, On. Each 
object in S has one outcome for T so the test 

partitions S into subsets S1, S2,… Sn where 
each object in Si has outcome Oi for T. T 

becomes the root of the decision tree and for 

each outcome Oi we build a subsidiary 

decision tree by invoking the same 

procedure recursively on the set Si. 

 

 

8. CONCLUSION AND FUTURE 

ENHANCEMENT  

 We have designed the AAMD-OELAC 

approach in this work to identify Android 

malware accurately and automatically. The 

goal of the AAMD-OELAC method was to 

automatically identify and categorise 

Android malware. The AAMD-OELAC 

approach uses ensemble classification, data 

preprocessing, and HPO-based parameter 

adjustment to accomplish this. The AAMD-

OELAC approach uses three machine 

learning models—LS-SVM, KELM, and 

RRVFLN—as part of an ensemble learning 
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process for Android malware detection. 

Lastly, the HPO technique is used to 

optimise the three DL models' parameter 

tuning, which leads to better malware 

detection outcomes. A comprehensive 

experimental investigation is carried out to 

demonstrate the superiority of the AAMD-

OELAC approach. The simulation results 

demonstrated the AAMDOELAC 

technique's superiority over other methods 

currently in use.  

In order to improve the detection of complex 

malware, future research might concentrate 

on creating increasingly sophisticated 

methods for capturing and analysing fine-

grained behaviours. Future research might 

also examine privacy-preserving strategies 

like federated learning or safe multi-party 

computing, which allow for cooperative 

malware detection without jeopardising user 

privacy. 
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