

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 8

AN OPTIMAL ENSEMBLE LEARNING FRAMEWORK FOR AUTOMATED

ANDROID MALWARE DETECTION IN CYBERSECURITY
1K.Kalyani, 2Midivelly Soumya

1Assistant Professor, Department of MCA Student, Sree Chaitanya College of Engineering,

Karimnagar
2MCA Student, Department of MCA Student, Sree Chaitanya College of Engineering,

Karimnagar

ABSTRACT

Human life has changed from real-world to

virtual worlds due to recent advancements in

computer technology. Malware is

superfluous software that is frequently used

to initiate cyberattacks. Advanced packaging

and obfuscation techniques are still being

used by malware strains to evolve. These

methods complicate the categorisation and

detection of malware. To successfully battle

emerging malware strains, new methods that

differ from traditional systems should be

used. All complicated and novel malware

strains cannot be detected by machine

learning (ML) techniques. The deep learning

(DL) approach may be a viable way to

identify every kind of malware. In this

research, the Optimal Ensemble Learning

Approach for Cybersecurity (AAMD-

OELAC) approach for Automated Android

Malware Detection is presented. The

automatic categorisation and detection of

Android malware is the main goal of the

AAMD-OELAC approach. The AAMD-

OELAC approach preprocesses data at the

preliminary stage in order to do this. Three

machine learning models—the Regularised

Random Vector Functional Link Neural

Network (RRVFLN), the Kernel Extreme

Learning Machine (KELM), and the Least

Square Support Vector Machine (LS-

SVM)—are used in the AAMD-OELAC

technique's ensemble learning process for

Android malware detection. Lastly, the three

DL models' optimal parameter tuning is

achieved by utilising the hunter-prey

optimisation (HPO) technique, which also

contributes to better malware detection

outcomes. A thorough experimental

investigation is carried out to demonstrate

the superiority of the AAMD-OELAC

approach. The simulation results

demonstrated the AAMD-OELAC

technique's superiority over other methods

already in use.

1. INTRODUCTION

Network engineers and computer scientists

are increasingly concerned about cyber

security, thus finding satisfactory answers to

a number of issues is necessary [1]. As a

result, different malware programs and

targets are well-identified and researched, as

are the rapid advancements in technology

and their intrinsic integration into all facets

of lifestyles [2]. The malware kind that

attracted the most attention in the online

community is Android malware. Android is

a popular operating system that leads the

market for operating systems [3].

 Malware invasive methods emerge

for avoiding identification, as few malware

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 9

applications have more than 50 parameters

that make detection a difficult one [4].

Hence, it is essential to devise techniques

that deal with the continuous growth of

Android malware to find it, deactivate or

remove it efficiently. All these difficulties

engage scholars in the area and urge them to

continue more research to find malware and

manage it properly [5]. Thus, researchers

have developed three mechanisms to find

Android malware such as dynamic, static,

and hybrid analysis methods. Static analysis

extracts the features that assist in identifying

harmful performance for apps without a

demanding actual application deployment

[6]. But this kind of analysis suffered from

code obfuscation methods which assist help

malware author to avoid static methods.

Dynamic analysis can be used for

determining the malware of apps in their

runtime [7]. Commonly, the static analysis

feature offers the capability of locating the

malware element using source code, while

the dynamic analysis feature offers the

capability of finding the location of malware

in a runtime environment. Android

developers and users can be exposed to

unnecessary risks and dangers with malware

[8]. This study covers malware detection

methods. The detection of malware using

the ML model includes Android Application

Packages (APKs) for deriving an

appropriate set of features. Deep learning

(DL) and machine learning (ML)

approaches can be used for recognizing

malicious APKs [9]. Like malware

detection, vulnerability detection in software

code has two stages: training ML on derived

attributes to find vulnerable code segments

and feature generation utilizing code

analysis [10].

 This paper presents an

Automated Android Malware Detection

using Optimal Ensemble Learning Approach

for Cyber security (AAMD-OELAC)

technique. The AAMDOELAC technique

performs data preprocessing at the

preliminary stage. For the Android malware

detection process, the AAMD-OELAC

technique follows an ensemble learning

process using three ML models, namely

Least Square Support Vector Machine (LS-

SVM), kernel extreme learning machine

(KELM), and Regularized random vector

functional link neural network (RRVFLN).

Finally, the hunter-prey optimization (HPO)

algorithm is exploited for the optimal

parameter tuning of the three DL models,

and it helps accomplish improved malware

detection results. To indicate the supremacy

of the AAMD-OELAC approach, a

comprehensive experimental analysis is

carried out. In short, the key contributions

are listed as follows.

 • An intelligent AAMD-OELAC

technique comprising data preprocessing,

ensemble learning, and HPO-based hyper

parameter tuning is presented for Android

malware detection. To the best of our

knowledge, the AAMD-OELAC technique

never existed in the literature.

 • Perform ensemble learning-based

classification process comprising LS-SVM,

KELM, and RRVFLN models for Android

malware detection.

 • The combination of the HPO

algorithm and ensemble learning process

improves the detection accuracy of Android

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 10

malware. By utilizing multiple classifiers

and optimization strategies, the model can

effectively identify malicious patterns and

behaviors in Android applications.

2. LITERATURE SURVEY

‘‘Adversarial superiority in Android

malware detection: Lessons from

reinforcement learning based evasion

attacks and defenses,’’
Today, android smartphones are being used

by billions of users and thus have become a

lucrative target of malware designers.

Therefore being one step ahead in this zero-

sum game of malware detection between the

anti-malware community and malware

developers is more of a necessity than a

desire. This work focuses on a proactive

adversary-aware framework to develop

adversarially superior android

malware detection models. We first

investigate the adversarial robustness of

thirty-six distinct malware detection models

constructed using two static features

(permission and intent) and

eighteen classification algorithms. We

designed two Targeted Type-II Evasion

Attacks (TRPO-MalEAttack and PPO-

MalEAttack) based on reinforcement

learning to exploit vulnerabilities in the

above malware detection models. The

attacks aim to add minimum perturbations in

each malware application and convert it into

an adversarial application that can fool the

malware detection models. The TRPO-

MalEAttack achieves an average fooling

rate of 95.75% (with 2.02 mean

perturbations), reducing the average

accuracy from 86.01% to 49.11% in thirty-

six malware detection models. On the other

hand, The PPO-MalEAttack achieves a

higher average fooling rate of 96.87% (with

2.08 mean perturbations), reducing the

average accuracy from 86.01% to 48.65% in

the same thirty-six detection models. We

also develop a list of the TEN most

vulnerable android permissions and intents

that an adversary can use to generate more

adversarial applications. Later, we propose a

defense strategy (MalVPatch) to counter

the adversarial attacks on malware detection

models. The MalVPatch defense achieves

higher detection accuracy along with a

drastic improvement in the adversarial

robustness of malware detection models.

Finally, we conclude that investigating the

adversarial robustness of models is

necessary before their real-world

deployment and helps achieve adversarial

superiority in android malware detection.

‘‘You are what the permissions told me!

Android malware detection based on

hybrid tactics,’’
Recent years have witnessed a significant

increase in the use of Android devices in

many aspects of our life. However, users can

download Android apps from third-party

channels, which provides numerous

opportunities for malware. Attackers utilize

unsolicited permissions to gain access to the

sensitive private intelligence of users. Since

signature-based antivirus solutions no longer

meet practical needs, efficient and adaptable

solutions are desperately needed, especially

in new variants. As a remedy, we propose a

hybrid Android malware detection approach

that combines dynamic and static tactics.

We firstly adopt static analysis inferring

different permission usage patterns

between malware and benign apps based on

https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/malware
https://www.sciencedirect.com/topics/computer-science/malware-detection
https://www.sciencedirect.com/topics/computer-science/malware-developer
https://www.sciencedirect.com/topics/computer-science/malware-developer
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/classification-algorithm
https://www.sciencedirect.com/topics/computer-science/reinforcement-learning
https://www.sciencedirect.com/topics/computer-science/reinforcement-learning
https://www.sciencedirect.com/topics/computer-science/adversarial-machine-learning
https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/android
https://www.sciencedirect.com/topics/computer-science/malware
https://www.sciencedirect.com/topics/computer-science/antivirus-solution
https://www.sciencedirect.com/topics/computer-science/android-malware
https://www.sciencedirect.com/topics/computer-science/static-program-analysis
https://www.sciencedirect.com/topics/computer-science/malware

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 11

the machine-learning-based method. To

classify the suspicious apps further, we

extract the object reference relationships

from the memory heap to construct a

dynamic feature base. We then present an

improved state-based algorithm based on

DAMBA. Experimental results on a real-

world dataset of 21,708 apps show that our

approach outperforms the well-known

detector with 97.5% F1-measure. Besides,

our system is demonstrated to resist

permission abuse behaviors and obfuscation

techniques.

‘‘Metaheuristics with deep learning

model for cybersecurity and Android

malware detection and classification,’
Since the development of information

systems during the last decade,

cybersecurity has become a critical concern

for many groups, organizations, and

institutions. Malware applications are

among the commonly used tools and tactics

for perpetrating a cyberattack on Android

devices, and it is becoming a challenging

task to develop novel ways of identifying

them. There are various malware detection

models available to strengthen the Android

operating system against such attacks. These

malware detectors categorize the target

applications based on the patterns that exist

in the features present in the Android

applications. As the analytics data continue

to grow, they negatively affect the Android

defense mechanisms. Since large numbers of

unwanted features create a performance

bottleneck for the detection mechanism,

feature selection techniques are found to be

beneficial. This work presents a Rock Hyrax

Swarm Optimization with deep learning-

based Android malware detection

(RHSODL-AMD) model. The technique

presented includes finding the Application

Programming Interfaces (API) calls and the

most significant permissions, which results

in effective discrimination between the good

ware and malware applications. Therefore,

an RHSO based feature subset selection

(RHSO-FS) technique is derived to improve

the classification results. In addition, the

Adamax optimizer with attention recurrent

autoencoder (ARAE) model is employed for

Android malware detection. The

experimental validation of the RHSODL-

AMD technique on the Andro-AutoPsy

dataset exhibits its promising performance,

with a maximum accuracy of 99.05%.

‘‘A method for automatic Android

malware detection based on static

analysis and deep learning,’’

The computers nowadays are being replaced

by the smartphones for the most of the

internet users around the world, and Android

is getting the most of the smartphone

systems’ market. This rise of the usage of

smartphones generally, and the Android

system specifically, leads to a strong need to

effectively secure Android, as the malware

developers are targeting it with sophisticated

and obfuscated malware applications.

Consequently, a lot of studies were

performed to propose a robust method to

detect and classify android malicious

software (malware). Some of them were

effective, some were not; with accuracy

below 90%, and some of them are being

outdated; using datasets that became old

containing applications for old versions of

Android that are rarely used today. In this

paper, a new method is proposed by using

https://www.sciencedirect.com/topics/computer-science/obfuscation-technique
https://www.sciencedirect.com/topics/computer-science/obfuscation-technique

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 12

static analysis and gathering as most useful

features of android applications as possible,

along with two new proposed features, and

then passing them to a functional API deep

learning model we made. This method was

implemented on a new and classified

android application dataset, using 14079

malware and benign samples in total, with

malware samples classified into four

malware classes. Two major experiments

with this dataset were implemented, one for

malware detection with the dataset samples

categorized into two classes as just malware

and benign, the second one was made for

malware detection and classification, using

all the five classes of the dataset. As a result,

our model overcomes the related works

when using just two classes with F1-score of

99.5%. Also, high malware detection and

classification performance was obtained by

using the five classes, with F1-score of 97%.

3. EXISTING SYSTEM

Shaukat et al. [11] devise a new DL-related

method for detecting malware. It delivered

superior outcomes to classical methods by

merging dynamic and static analysis

benefits. Firstly, it visualizes a portable

executable (PE) file as coloured images.

Secondly, it extracted deep features from

colour images utilizing fine-tuned DL

method. Thirdly, it finds malware related to

the deep features of SVM. Geremias et al.

[12] presented a method using image-based

DL called novel multi-view Android

malware identification, applied threefold.

Firstly, as per the many feature sets in multi-

view settings, apps were assessed, thereby

raising the data presented for the

classification. Secondly, the derived feature

set is transformed into image formats while

preserving the essential elements of data

distribution, keeping the data for the

classifier task. Thirdly, built images are

collectively depicted in one shot, all in a

predefined image channel, allowing the

implementation of DL structure.

Kim et al. [13] modelled a malware

detection system called MAPAS that attains

higher precision and adaptable use of

computational resources. MAPAS examined

the performances of malicious apps based on

API call graphs of them through CNN.

However, the presented MAPAS technique

does not utilize a classifier method produced

by CNN, it uses CNN to find typical

attributes of the API call graph of malware.

Fallah and Bidgoly [14] developed a

technique related to LSTM for detecting

malware-having the capability of

differentiating benign and malware samples

and identifying and detecting unseen and

new types of malware. In this study, the

author has executed many studies to show

the abilities of the presented technique,

including new malware family detection,

malware identification, malware family

identification, as well as assessing the

minimal time needed to find

malware.

Sihag et al. [15] introduced DL-based

Android malware identification with the use

of DYnamic features (De-LADY), a resilient

obfuscation method. It has used behavioural

features from dynamic analysis of an

application performed in the emulated

setting. Wang et al. [16] present a hybrid

method related to DAE and CNN. Firstly, to

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 13

enhance the precision of malware detection,

the author reconstructed the high-

dimensional feature of apps and used many

CNN to find Android malware. Secondly, to

diminish the training period, the author used

DAE as a pre-training approach for CNN.

With the consolidation, DAE and CNN

method (DAE-CNN) can study flexible

patterns quickly.

Yadav et al. [17] presented a performance

comparison of 26 existing pretrained CNN

methods in Android malware detection.

Depending on the outcomes, to find Android

malware, an EfficientNet-B4 CNN-based

approach was devised with the use of an

image-based malware representation of the

Android DEX file. From the malware

images, EfficientNet-B4 extracted relevant

attributes. Masum and Shahriar [18] devised

a DL structure named Droid-NNet, for

classifying malware. But this technique

Droid-NNet, is a deep learner that surpasses

existing cutting-edge ML approaches. Idrees

et al. [19] examine PIndroid – a new

Permission and Intents-based structure to

detect Android malware applications. As we

know, PIndroid is the primary solution,

which utilizes a group of permissions and

purposes supplemented with Ensemble

approaches for correct malware detection. In

[20], the authors establish that once the

concept drift was discussed, permissions

create long-lasting and effectual malware

detection methods. Taha and Barukab [21]

introduce a mechanism for Android malware

classification utilizing optimizer ensemble

learning depending on GA. The GA was

utilized for optimizing the parameter

settings from the RF technique for obtaining

the maximum Android malware classifier

accuracy. Sabanci et al. [22] intended to

categorize pepper seeds belonging to distinct

cultivars with CNN techniques. Two

methods are presented for classification.

Initially, the CNN approaches (ResNet50

and ResNet18) are trained for pepper seeds.

Secondary, diverse in the first, the features

of pre-training CNN approaches are fused,

and feature selection has been executed to

the fused features. In [23], the authors

examine recent algorithms utilized for

Android Malware Detection. As a result, an

outline of the Android system exposed the

underlying processes and the problems

facing its security structure.

Disadvantages

• The complexity of data: Most of the
existing machine learning models must be

able to accurately interpret large and

complex datasets to detect Android Malware

Detection.

• Data availability: Most machine learning
models require large amounts of data to

create accurate predictions. If data is

unavailable in sufficient quantities, then

model accuracy may suffer.

• Incorrect labeling: The existing machine
learning models are only as accurate as the

data trained using the input dataset. If the

data has been incorrectly labeled, the model

cannot make accurate predictions.

4. PROPOSED SYSTEM

This paper presents an Automated Android

Malware Detection using Optimal Ensemble

Learning Approach for Cybersecurity

(AAMD-OELAC) technique. The

AAMDOELAC technique performs data

preprocessing at the preliminary stage. For

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 14

the Android malware detection process, the

AAMD-OELAC technique follows an

ensemble learning process using three ML

models, namely Least Square Support

Vector Machine (LS-SVM), kernel extreme

learning machine (KELM), and Regularized

random vector functional link neural

network (RRVFLN). Finally, the hunter-

prey optimization (HPO) algorithm is

exploited for the optimal parameter tuning

of the three DL models, and it helps

accomplish improved malware detection

results. To indicate the supremacy of the

AAMD-OELAC approach, a comprehensive

experimental analysis is carried out.

Advantages

• An intelligent AAMD-OELAC technique

comprising data preprocessing, ensemble

learning, and HPO-based hyperparameter

tuning is presented for Android malware

detection. To the best of our knowledge, the

AAMD-OELAC technique never existed in

the literature.

• Perform ensemble learning-based

classification process comprising LS-SVM,

KELM, and RRVFLN models for Android

malware detection.

• The combination of the HPO algorithm
and ensemble learning process improves the

detection accuracy of Android malware. By

utilizing multiple classifiers and

optimization strategies, the model can

effectively identify malicious patterns and

behaviours in Android applications.

5. SYSTEM ARCHITECTURE

6. IMPLEMENTATION

Modules

Service Provider

In this module, the Service Provider has to

login by using valid user name and

password. After login successful he can do

some operations such as Train and

Test Data Sets, View Trained and Tested

Accuracy in Bar Chart, View Trained and

Tested Accuracy Results, View Predicted

Android Malware Detection Details, Find

Predicted Android Malware Detection Ratio,

Download Predicted Datasets, View

Android Malware Predicted Ratio Results,

View All Remote Users.

View and Authorize Users

In this module, the admin can view the list

of users who all registered. In this, the

admin can view the user’s details such as,

user name, email, address and admin

authorizes the users.

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 15

Remote User

In this module, there are n numbers of users

are present. User should register before

doing any operations. Once user registers,

their details will be stored to the database.

After registration successful, he has to login

by using authorized user name and

password. Once Login is successful user

will do some operations like REGISTER

AND LOGIN, PREDICT ANDROID

MALWARE TYPE, VIEW YOUR

PROFILE.

7. ALGORITHIMS

Naïve Bayes

The naive bayes approach is a supervised

learning method which is based on a

simplistic hypothesis: it assumes that the

presence (or absence) of a particular feature

of a class is unrelated to the presence (or

absence) of any other feature .

Yet, despite this, it appears robust and

efficient. Its performance is comparable to

other supervised learning techniques.

Various reasons have been advanced in the

literature. In this tutorial, we highlight an

explanation based on the representation bias.

The naive bayes classifier is a linear

classifier, as well as linear discriminant

analysis, logistic regression or linear SVM

(support vector machine). The difference

lies on the method of estimating the

parameters of the classifier (the learning

bias).

While the Naive Bayes classifier is widely

used in the research world, it is not

widespread among practitioners which want

to obtain usable results. On the one hand, the

researchers found especially it is very easy

to program and implement it, its parameters

are easy to estimate, learning is very fast

even on very large databases, its accuracy is

reasonably good in comparison to the other

approaches. On the other hand, the final

users do not obtain a model easy to interpret

and deploy, they does not understand the

interest of such a technique.

Thus, we introduce in a new presentation of

the results of the learning process. The

classifier is easier to understand, and its

deployment is also made easier. In the first

part of this tutorial, we present some

theoretical aspects of the naive bayes

classifier. Then, we implement the approach

on a dataset with Tanagra. We compare the

obtained results (the parameters of the

model) to those obtained with other linear

approaches such as the logistic regression,

the linear discriminant analysis and the

linear SVM. We note that the results are

highly consistent. This largely explains the

good performance of the method in

comparison to others. In the second part, we

use various tools on the same dataset (Weka

3.6.0, R 2.9.2, Knime 2.1.1, Orange 2.0b

and RapidMiner 4.6.0). We try above all to

understand the obtained results.

Logistic regression Classifiers

Logistic regression analysis studies the

association between a categorical dependent

variable and a set of independent

(explanatory) variables. The name logistic

regression is used when the dependent

variable has only two values, such as 0 and 1

or Yes and No. The name multinomial

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 16

logistic regression is usually reserved for the

case when the dependent variable has three

or more unique values, such as Married,

Single, Divorced, or Widowed. Although the

type of data used for the dependent variable

is different from that of multiple regression,

the practical use of the procedure is similar.

Logistic regression competes with

discriminant analysis as a method for

analyzing categorical-response variables.

Many statisticians feel that logistic

regression is more versatile and better suited

for modeling most situations than is

discriminant analysis. This is because

logistic regression does not assume that the

independent variables are normally

distributed, as discriminant analysis does.

This program computes binary logistic

regression and multinomial logistic

regression on both numeric and categorical

independent variables. It reports on the

regression equation as well as the goodness

of fit, odds ratios, confidence limits,

likelihood, and deviance. It performs a

comprehensive residual analysis including

diagnostic residual reports and plots. It can

perform an independent variable subset

selection search, looking for the best

regression model with the fewest

independent variables. It provides

confidence intervals on predicted values and

provides ROC curves to help determine the

best cutoff point for classification. It allows

you to validate your results by automatically

classifying rows that are not used during the

analysis.

Decision tree classifiers

Decision tree classifiers are used

successfully in many diverse areas. Their

most important feature is the capability of

capturing descriptive decision making

knowledge from the supplied data. Decision

tree can be generated from training sets. The

procedure for such generation based on the

set of objects (S), each belonging to one of

the classes C1, C2, …, Ck is as follows:

Step 1. If all the objects in S belong to the

same class, for example Ci, the decision tree

for S consists of a leaf labeled with this

class

Step 2. Otherwise, let T be some test with

possible outcomes O1, O2,…, On. Each
object in S has one outcome for T so the test

partitions S into subsets S1, S2,… Sn where
each object in Si has outcome Oi for T. T

becomes the root of the decision tree and for

each outcome Oi we build a subsidiary

decision tree by invoking the same

procedure recursively on the set Si.

8. CONCLUSION AND FUTURE

ENHANCEMENT

 We have designed the AAMD-OELAC

approach in this work to identify Android

malware accurately and automatically. The

goal of the AAMD-OELAC method was to

automatically identify and categorise

Android malware. The AAMD-OELAC

approach uses ensemble classification, data

preprocessing, and HPO-based parameter

adjustment to accomplish this. The AAMD-

OELAC approach uses three machine

learning models—LS-SVM, KELM, and

RRVFLN—as part of an ensemble learning

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 17

process for Android malware detection.

Lastly, the HPO technique is used to

optimise the three DL models' parameter

tuning, which leads to better malware

detection outcomes. A comprehensive

experimental investigation is carried out to

demonstrate the superiority of the AAMD-

OELAC approach. The simulation results

demonstrated the AAMDOELAC

technique's superiority over other methods

currently in use.

In order to improve the detection of complex

malware, future research might concentrate

on creating increasingly sophisticated

methods for capturing and analysing fine-

grained behaviours. Future research might

also examine privacy-preserving strategies

like federated learning or safe multi-party

computing, which allow for cooperative

malware detection without jeopardising user

privacy.

REFERENCES

[1] H. Rathore, A. Nandanwar, S. K. Sahay,

and M. Sewak, ‘‘Adversarial superiority in

Android malware detection: Lessons from

reinforcement learning based evasion attacks

and defenses,’’ Forensic Sci. Int., Digit.

Invest., vol. 44, Mar. 2023, Art. no. 301511.

[2] H. Wang, W. Zhang, and H. He, ‘‘You

are that the permissions told me! Android

malware detection based on hybrid tactics,’’
J. Inf. Secur. Appl., vol. 66, May 2022, Art.

no. 103159.

[3] A. Albakri, F. Alhayan, N. Alturki, S.

Ahamed, and S. Shamsudheen,

‘‘Metaheuristics with deep learning model

for cybersecurity and Android malware

detection and classification,’’ Appl. Sci., vol.

13, no. 4, p. 2172, Feb. 2023.

[4] M. Ibrahim, B. Issa, and M. B. Jasser,

‘‘A method for automatic Android malware

detection based on static analysis and deep

learning,’’ IEEE Access, vol. 10, pp.

117334–117352, 2022.

[5] L. Hammood, İ. A. Doğru, and K. Kılıç,
‘‘Machine learning-based adaptive genetic

algorithm for Android malware detection in

auto-driving vehicles,’’ Appl. Sci., vol. 13,

no. 9, p. 5403, Apr. 2023.

[6] P. Bhat and K. Dutta, ‘‘A multi-tiered

feature selection model for Android

malware detection based on feature

discrimination and information gain,’’ J.

King Saud Univ.-Comput. Inf. Sci., vol. 34,

no. 10, pp. 9464–9477, Nov. 2022.

[7] D.Wang, T. Chen, Z. Zhang, and N.

Zhang, ‘‘A survey of Android malware

detection based on deep learning,’’ in Proc.

Int. Conf. Mach. Learn. Cyber Secur. Cham,

Switzerland: Springer, 2023, pp. 228–242.

[8] Y. Zhao, L. Li, H. Wang, H. Cai, T. F.

Bissyandé, J. Klein, and J. Grundy,

‘‘On the impact of sample duplication in

machine-learning-based Android

malware detection,’’ ACM Trans. Softw.

Eng. Methodol., vol. 30, no. 3, pp. 1–38, Jul.

2021.

[9] E. C. Bayazit, O. K. Sahingoz, and B.

Dogan, ‘‘Deep learning based malware

detection for Android systems: A

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 18

comparative analysis,’’ Tehnički vjesnik,

vol. 30, no. 3, pp. 787–796, 2023.

[10] H.-J. Zhu, W. Gu, L.-M. Wang, Z.-C.

Xu, and V. S. Sheng, ‘‘Android malware

detection based on multi-head squeeze-and-

excitation residual network,’’ Expert Syst.

Appl., vol. 212, Feb. 2023, Art. no. 118705.

[11] K. Shaukat, S. Luo, and V.

Varadharajan, ‘‘A novel deep learning-

based approach for malware detection,’’
Eng. Appl. Artif. Intell., vol. 122, Jun. 2023,

Art. no. 106030.

[12] J. Geremias, E. K. Viegas, A. O. Santin,

A. Britto, and P. Horchulhack, ‘‘Towards

multi-view Android malware detection

through image-based deep learning,’’ in

Proc. Int.Wireless Commun. Mobile

Comput. (IWCMC), May 2022, pp. 572–577.

72516 VOLUME 11, 2023 IEEE

Transaction on

MachineLearning,Volume:11,Issue

Date:11.July.2023

[13] J. Kim, Y. Ban, E. Ko, H. Cho, and J.

H. Yi, ‘‘MAPAS: A practical deep learning-

based Android malware detection system,’’
Int. J. Inf. Secur., vol. 21, no. 4, pp. 725–
738, Aug. 2022.

[14] S. Fallah and A. J. Bidgoly, ‘‘Android

malware detection using network traffic

based on sequential deep learning models,’’
Softw., Pract. Exper., vol. 52, no. 9, pp.

1987–2004, Sep. 2022.

[15] V. Sihag, M. Vardhan, P. Singh, G.

Choudhary, and S. Son, ‘‘De-LADY: Deep

learning-based Android malware detection

using dynamic features,’’ J. Internet Serv.

Inf. Secur., vol. 11, no. 2, p. 34, 2021.

