

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 57

DISTRIBUTED CONCURRENCY BUGS DETECTION SYSTEM USING

IMPROVED LOG MINING

 R SUMA K LAKSHMAN REDDY

Master of Computer Applications (MCA), Associate Professor in Computer Science,

SVKP & Dr. K.S Raju Arts & Science College(A), SVKP & Dr.K.S Raju Arts & Science College(A),

Penugonda, W.G.Dt., A.P, India Penugonda, W.G.Dt., A.P, India

Sumaramba3@gmail.com Klreddy29@yahoo.co.in

ABSTRACT:

Distributed concurrency problems can cause data loss and service outages in cloud systems. This work

introduces CLOUDRAID, a novel automatic method for quickly and precisely finding distributed concurrency

issues. Due to the fact that they are caused by unanticipated message orderings and untimely interaction among

nodes, distributed concurrency problems are notoriously difficult to identify. Only the message orderings that

are likely to reveal flaws are examined and tested automatically by CLOUDRAID in order to swiftly and

effectively find concurrent bugs in cloud systems. For example, CLOUDRAID searches through the logs of

earlier runs to find message orderings that are technically possible but haven't been thoroughly verified. We also

provide a method for automatically adding new logs to the system under test called log boosting. These

additional logs enhance CLOUDRAID's functionality while adding no appreciable performance overhead. Our

log-based methodology makes it suitable for use in live systems. Six exemplary distributed systems—

Hadoop2/Yarn, HBase, HDFS, Cassandra, Zookeeper, and Flink—were analysed using CLOUDRAID. In 35

hours, CLOUDRAID was able to test 60 different iterations of these six systems—ten iterations for each

system—discovering 31 concurrent problems, including nine newly reported ones. Three of the nine newly

discovered issues are critical and have already been addressed, according to their original developers, who have

all confirmed them.

INTRODUCTION

The core building blocks of contemporary cloud

applications are distributed systems, such as scale-

out computing frameworks [1], [2], distributed key-

value stores [3], [4], scalable file systems [3], [4],

and cluster management services [2]. High stability

of their underlying distributed systems becomes

essential as cloud applications offer users round-

the-clock online services. Distributed systems,

however, are notoriously challenging to implement

correctly. Real-world distributed systems

commonly have software vulnerabilities that

frequently result in data loss and cloud outages and

cost service providers millions of dollars per

incident [5], [6]

Distributed concurrency issues are among the most

problematic distributed systems bugs [7], [8].

Complex message inter leavings, or unexpected

orderings of communication events, set off these

problems. Programmers find it challenging to

handle and properly analyse concurrent executions

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 58

across several machines. This feature has spurred a

significant amount of research on distributed system

model checkers [9], [10], [11], [12], which

rigorously test all potential message orderings in

order to uncover faults that are difficult to find.

When performing the same workload that was

previously certified, these model checks should

theoretically ensure reliability. State-space

explosion is a challenge that distributed system

model checkers must deal with, though [9]. It is still

challenging to scale recent advancements to

numerous significant real-world applications [9].

For instance, 5,495 messages are involved in our

tests using the Word Count workload on

Hadoop2/Yarn. It becomes impractical to test every

conceivable message ordering in a timely manner,

even in such a straightforward instance.

LITERATURE SURVEY

We go over earlier investigations into distributed

concurrent bug detection, log analysis, and log

improvement. 5.1 Detection of distributed

concurrency bugs Distributed system model

checkers have received a lot of attention in the

literature [9], [10], [11], [12], and [32]. These

checkers intercept communications in real time and

thoroughly shuffle their orderings. Despite being

strong, they have a state space explosion issue.

Recent technologies [9], [12] utilise state reduction

approaches to solve this issue, however they may

still not be scalable for huge state spaces [9]. In

order to identify race circumstances in distributed

systems, Liu et al. [33] recently enhanced race

detection methods for multi-threaded programs

[34], [35], [36], [37], [38], and [39]. In order to

gather runtime traces at runtime, their method

instruments memory accesses and communication

events in a system. Using a happen before model

tailored to distributed systems, an offline analysis is

carried out to examine the happen-before link

between memory accesses. Accesses to concurrent

memory that could result in exceptions are viewed

as damaging data races. To more thoroughly

confirm the discovered race conditions, a trigger is

used. According to [40], its method limits itself to

message orderings involving just two messages and

mines logs to retrieve runtime traces without

instrumentation. With the help of two important

extensions, we have increased the efficacy of this

earlier strategy in this paper. First, we provide a

novel log improvement method that enables us to

find flaws that would otherwise go undetected. We

can now identify issues that appear in message

orderings with any number of messages, which is

the second advancement.

With these two additions, we have demonstrated

experimentally that our framework is more capable

of identifying flaws in fresh programs. To assess the

robustness of distributed systems, fault injection

techniques [41], [42], [43], [44], [45], [46], [47],

[48], [49] are frequently utilised. They concentrate

instead on how to introduce faults at various system

states to reveal flaws in the fault handlers.

Combining CLOUDRAID can improve the

efficiency of fault-related concurrent problem

detection. Log Analysis (5.2) Numerous studies

[25], [45], [50], [51], [52], [53], [54], [55], [56],

[57], [58] have mined logs for a variety of

information, including temporal invariants [51],

[53], user request flow [50], [52], system

architecture [25], and timing information [56]. The

information that has been mined can then be used to

improve monitoring, understanding, and analysis of

complex distributed systems. Machine learning

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 59

methods are used by Xu et al. [17] to analyse

console logs from a system and find anomalous

executions. To aid users in identifying anomalous

behaviours, mined data is visualised, including

logged values and logging frequencies. To

determine the strongest correlation between system

components and performance, DISTALYZER [59]

compares logs from abnormal and normal

executions.

To profile request latency, Iprof [18] pulls request

IDs and timing data from logs. By examining the

relationships between the logged ID variables to

profile various components across the full

distributed software stack, Stitch [60] groups log

instances into tasks and sub-tasks. However,

CLOUDRAID effectively detects concurrent

problems by sifting through logs to find message

orderings that haven't been used enough. Similar

log analysis is used by CRASHTUNER [61] to infer

some system meta-information, such as the running

nodes and tasks/resources connected to each node.

The meta-info is used by this tool to identify crash-

recovery problems, which are brought on by

crashing a node where the meta-info for that node is

being accessed.

CLOUDRAID, on the other hand, uses log analysis

to reveal the orderings between communication

events in order to find distributed concurrency

problems. 5.3 Enhancement of Logs A number of

log improving approaches [26], [27], [28], [29],

[62], [63] exist to assist developers in more

efficiently identifying the main causes in online

systems. For instance, Log Enhancer [26] employs

dependence analysis to identify factors that have an

effect on particular conditional branches and

incorporates these variables into the existing logs.

In order to add more logging statements to the

exception handlers, Log Advisor [27] analyses

unlogged exceptions in the source code. Our log

enhancer attempts to effectively find more crucial

signals that could result in concurrency issues, as

opposed to some earlier log improving solutions. As

a result, our log enhancer adds log statements for

unlogged messages where local ID variables are

present.

PROBLEM STATEMENT

To assess the robustness of distributed systems,

fault injection techniques [41], [42], [43], [44], [45],

[46], [47], [48], [49] are frequently utilised. They

concentrate instead on how to introduce faults at

various system states to reveal flaws in the fault

handlers. Combining CLOUDRAID can improve

the efficiency of fault-related concurrent problem

detection.

Machine learning methods are used by Xu et al.

[17] to analyse console logs from a system and find

anomalous executions. To aid users in identifying

anomalous behaviours, mined data is visualised,

including logged values and logging frequencies.

To determine the strongest correlation between

system components and performance,

DISTALYZER [59] compares logs from abnormal

and normal executions. To profile request latency,

Iprof [18] pulls request IDs and timing data from

logs. By examining the relationships between the

logged ID variables to profile various components

across the full distributed software stack, Stitch [60]

groups log instances into tasks and sub-tasks.

However, CLOUDRAID effectively detects

concurrent problems by sifting through logs to find

message orderings that haven't been used enough.

Similar log analysis is used by CRASHTUNER

[61] to infer some system meta-information, such as

the running nodes and tasks/resources connected to

each node. The meta-info is used by this tool to

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 60

identify crash-recovery problems, which are

brought on by crashing a node where the meta-info

for that node is being accessed. CLOUDRAID, on

the other hand, uses log analysis to reveal the

orderings between communication events in order

to find distributed concurrency problems.An

existing methodology does not use a cutting-edge

technique to identify distributed concurrency

problems. The system doesn't strive for

CLOUDRAID uses the run-time logs of active

systems and stays away from pointless repeating

checks.

METHODODLOGY

The suggested method focuses on finding flaws that

result from order violations, or bugs that appear

anytime a message comes in the incorrect order

relative to another event. Rearranging a pair of

messages will most likely reveal the majority of

these issues, as was previously stated.

when there are more than two messages involved, a

small number of serious errors still happen. Only

under precise temporal circumstances, such as those

involving some particular messages or events (such

as node crashes or reboots), can these flaws be

made public. We have given our method the ability

to randomly reorganise any amount of messages for

an application in order to discover such issues.

ARCHITECHTURE:

RESULTS:

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 61

CONCLUSION:

We present CLOUDRAID, a simple yet effective tool

for detecting distributed concurrency bugs.

CLOUDRAID achieves its efficiency and effectiveness

by analyzing message orderings that are likely to expose

errors from existing logs. Our evaluation shows that

CLOUDRAID is simple to deploy and effective in

detecting bugs. In particular, CLOUDRAID can test 60

versions of six representative systems in 35 hours,

finding successfully 31 bugs, including 9 new bugs that

have never been reported before.

REFERENCES

1. X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D.

Yuan, and M. Stumm, “lprof: A non-intrusive request

flow profiler for distributed systems.” in OSDI, vol. 14,

2014, pp. 629–644.

 2. L. Li, C. Cifuentes, and N. Keynes, “Boosting the

performance of flow-sensitive points-to analysis using

value flow,” in Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on

Foundations of Software Engineering, ser. ESEC/FSE

’11. New York, NY, USA: ACM, 2011, pp. 343–353.

[Online]. Available:

http://doi.acm.org/10.1145/2025113.2025160

3. “Precise and scalable context-sensitive pointer

analysis via value flow graph,” in Proceedings of the

2013 International Symposium on Memory

Management, ser. ISMM ’13. New York, NY, USA:

ACM, 2013, pp. 85–96. [Online].

 Available: http://doi.acm.org/10.1145/2464157.2466483

 4. T. Tan, Y. Li, and J. Xue, “Efficient and precise

points-to analysis: Modeling the heap by merging

http://doi.acm.org/10.1145/2025113.2025160
http://doi.acm.org/10.1145/2464157.2466483

Volume 13, Issue 08, Aug 2023 ISSN 2457-0362 Page 62

equivalent automata,” in Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI 2017. New York,

NY, USA: ACM, 2017, pp. 278–291.

[Online].Available:

http://doi.acm.org/10.1145/3062341.3062360

 5. Y. Sui and J. Xue, “On-demand strong update

analysis via valueflow refinement,” in Proceedings of

the 2016 24th ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE 2016.

New York, NY, USA: ACM, 2016, pp. 460–473.

[Online]. Available:

http://doi.acm.org/10.1145/2950290.2950296

ABOUT AUTHORS

R.SUMA

Currently pursuing MCA in SVKP&DR.K.S.RAJU Arts

&Science college affiliated to Adikavi Nannaya

University, Rajamahendravaram. Her research interests

include Data Structures,Web Technologies,Operating

SystemData Science and Artificial Inteligence.

K LAKSHMANA REDDY

Working as Associate Professor in SVKP &Dr K S Raju Arts

& Science College(A), Penugonda , West Godavari District,

A.P. He received Master’s Degree in Computer Applications

from Andhra University‘C’ level from DOEACC, New Delhi

and M.Tech from Acharya Nagarjuna University, A.P. He

attended and presented papers in conferences and seminars.

He has done online certifications in several courses from

NPTEL. His areas of interests include Computer Networks,

Network Security and Cryptography, Formal Languages and

Automata Theory and Object Oriented programming

languages.

.

http://doi.acm.org/10.1145/3062341.3062360
http://doi.acm.org/10.1145/2950290.2950296

