

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 999

A CAPABLE ACCESS CONTROL SYSTEM FOR PROTECTED CLOUD

STORAGE ANTI ATTACKING DATA

Mr. G Naga Kumar Kakarla
1
, Spurthi K

2
, Dr.Kishore Kumar K

3

1
Associate Professor, Computer Science and Engineering Gokaraju Lailavathi Womens

Engineering College Hyderabad, 500049

2
Assistant Professor, Dept of CSE, Siddhartha Institute of Technology & Sciences, Narapally,

Hyderabad, 500088, India.

3
Associate Professor Dept of CSE, Siddhartha Institute of Technology & Sciences, Narapally,

Hyderabad, 500088, India.

ABSTRAT

Given that it can significantly reduce the cost of hardware and software resources, one of the

most popular ideas in the IT sector is cloud computing, which refers to computing infrastructure.

Thanks to this simplicity of use, companies can now successfully capture data among their

employees. At first, the simplest solution seemed to simply be to store shared, unencrypted

copies of archived data in the cloud while keeping it securely accessible. The basis for this is the

false assumption that clouds maintained by a third party can be trusted. Complete confidence that

all information will remain confidential. Therefore, encryption is necessary and shared access

control must be used to store data in cipher text. However, in reality, some of these employees

may be rude and unwilling to follow basic engagement guidelines. Unfortunately, issues caused

by weak data providers are not currently being addressed. Information stored in cloud storage

can only be decrypted by authorized recipients thanks to literature describing the current form of

protection. Although malicious data editors write data according to regulations, encrypted texts

can be decrypted without their knowledge by unauthorized users who have the right keys or

simply by anyone who should not have the keys. The use of malicious data editors has a negative

impact because it may put a company's intellectual property at risk. To this day, the goal of the

study is to determine how to provide a reasonable solution to the problem when there are

conflicting data producers in the system.

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1000

Keywords: Secure cloud storage, access control, sanitizable, malicious data publishers

I INTRODUCTION

The emergence of cloud storage technology

has greatly impacted business operations and

the adoption of cloud technology has been

one of the biggest changes in the digital era.

Cloud storage provides low-cost solutions,

which would be ideal for businesses, such as

small and medium-sized enterprises (SMEs).

Having cloud storage allows businesses to

easily share their data among their employees.

This data is supposed to be used only by

employees of those companies, because it

may be linked to their intellectual property. At

first glance, simply storing data as plain text

in the cloud and protecting it with proper

access control would be a sufficient solution.

This is based on the assumption that the cloud

is completely trustworthy and will not leak

that data, which is impractical since the cloud

is owned by a third party. Therefore, it is

necessary to use encryption mechanism and

store data as ciphertext in the cloud to prevent

data leakage. An existing body of work in the

literature leverages the idea of attribute-based

encryption (ABE) [1], [2], [3] to enable this

unauthorized prevention by protecting the

data with an appropriate access policy.

Anyone with a valid decryption key that

complies with the access policy will be able to

successfully decrypt the data. This means that

the data will be stored as ciphertext instead of

plaintext in the cloud. This type of protection

takes into account data privacy only when the

data publishers are honest and follow the

encryption algorithm. Unfortunately, in

practice, some of these employees may be

malicious and attempt to intentionally leak the

contents of that data to unauthorized

recipients, such as competing businesses.

These malicious employees may want to

publish some sensitive content and store it in

the cloud, but they also allow other

unauthorized users to retrieve it, thus

constituting a malicious data spreader.

Unfortunately, the ABE-based approach is not

robust due to malicious data editors, which

maliciously encrypt data. Here, a malicious

data editor creates encrypted data according to

the specified policy, but the ciphertexts can be

decrypted by unauthorized users without valid

keys. In practice, malicious data spreaders

refer to company employees infected with

viruses or computers intended to leak

sensitive internal information. For example, a

malicious data editor might want to leak new

product designs or trade secrets that only

certain people are supposed to have access to.

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1001

The impact of malicious data sharing by

publishers is detrimental. In the above setup,

malicious data editors will create ciphertexts

containing copyrighted material that appear to

comply with the required security access

policy set by the organization. However, an

illegally encrypted file can be decrypted by

anyone without a valid decryption key.

Therefore, our main goal is to achieve data

privacy when data publishers are malicious

and do not follow the encryption algorithm

accordingly. Our goal is to propose a very

practical idea, called a sanitizable access

control system, or simply SACS, which is

designed to make cloud storage resilient

against malicious data editors. SACS enables

flexible access control for both publishers and

data recipients. Similar to ABE, SACS allows

any valid recipient equipped with private keys

that comply with the access policy to decrypt

the ciphertext. However, SACS is equipped

with a sanitization capability, which prevents

malicious data editors from creating

ciphertexts that can be decrypted without any

valid private key. Although malicious data

miners can maliciously create ciphertexts that

anyone can decrypt, a sanitizer will turn these

ciphertexts into new ciphertexts that can only

be decrypted by holders of valid private keys.

We present our architecture and plan to

realize the above concept of building SACS.

In addition, we also offer the SACS

application. organized. The rest of this

document is organized as follows.

II EXISTING SYSTEM

Currently, any file or document that a

customer stores in a cloud computing

environment is completely vulnerable to

hacking, giving a hacker access to the entire

contents of the file. The five types of entities

that make up the system model are cloud,

user, sanitizer, private key generator (PKG),

and external auditor. Users have the ability to

share their data with others by uploading it to

the cloud and using the storage space

provided by the service. In the cloud, the user

can maintain large amounts of data. The user

works for a company that requires storing a

lot of data in the cloud. Data blocks in the file

that represent sensitive information

(personally identifiable information) and the

sanitizer must verify signatories' signatures in

order to access sensitive organizational data.

Cloud storage users have the option to save

their content to the cloud remotely and make

it available to others. A cloud storage system

composed of many storage servers provides

long-term online storage services. When data

is stored on third-party cloud computing

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1002

infrastructure, there is a significant risk to

data privacy. Allowing a third party auditor

(TPA) to confirm, on behalf of the customer,

the accuracy of dynamic data stored in the

cloud. Previous attempts to maintain remote

data integrity often lacked provision for

dynamic data processes or the ability for

public auditing.

III LITERATURE SURVEY

In this section, we review some closely

related literature. Access Control: Access

control is able to ensure the security of data in

cloud storage systems. This has attracted a lot

of attention from academia and industry. IBM

developed the model based on systematic

capabilities and approaches to improve access

control in cloud services. Cryptographic

primitives have been proposed to enable

access control to encrypted storage, such as

stream encryption, proxy re-encryption, role-

based encryption, and attribute-based

encryption. For reasons of security,

scalability, and flexibility, ABE has been

considered one of the most suitable

technologies for enabling access control.

Users whose attributes match the access

policy can access the raw data. ABE is mainly

classified into two complementary forms, key

policy ABE and ciphertext policy ABE. In

CP-ABE, attributes are used to describe user

attributes and access policies for these

attributes are attached to the encrypted data.

Due to its flexibility and expressiveness, CP-

ABE has more applications in cloud storage

access control. In this paper, we borrow CP-

ABE as one of the components of our SACS

design. Sanitizable Signatures: Sanitizable

signatures (SS) are proposed to allow control

over modifications to signed messages

without invalidating the signature. SS is a

form of digital signature through which a

designated party (the sanitizer) can update

permissible parts of the signed message. He

introduced most of the security concepts in

the purgable signature cipher proposed to hide

the sanitizer's message signature pair. Many

SS schemes have been proposed to meet

different properties. SS provides the basis for

the concept of sanitization in cryptography.

Access Control Encryption: Access Control

Encryption (ACE) was introduced to provide

granular access control. ACE grants different

rights to different users, not only regarding

the messages they can receive, but also

regarding the messages they can send. This

includes an important sanitation feature. ACE

can prevent corrupt senders from sending

information to corrupt receivers. In ACE, the

sanitizer uses its sanitizer key to run a

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1003

specified randomization algorithm on the

incoming ciphertext and then passes the result

to the database server or recipients. Through

sanitization, ACE ensures that no matter what

the corrupted sender sends, what the recipient

receives looks like a random encryption of a

random message. In our SACS, the

sterilization process does not require a

sterilization switch from the authority. Only a

valid recipient, who has been assigned a valid

private key by the authority, can retrieve the

message.

IV PROPOSED SYSTEM

We want to raise awareness about the concept

of a sanitized access control system, or SACS,

to prevent cloud storage by authors of

untrusted data. Both data providers and

recipients can set their own access restrictions

using SACS. Like ABE, SACS allows any

authorized recipient who possesses a private

key and meets access requirements to decrypt

the ciphertext. On the other hand, the

sanitization functions provided by SACS

prevent malicious data editors from creating

ciphertexts that can be decrypted without

using real private keys. The sanitizer will

convert these ciphertexts into new ciphertexts

that can only be decrypted by people with a

legal private key, although it is possible that

hostile data producers will create ciphertexts

that anyone can understand. We present both

our architecture and strategy for building

SACS using the above technique.

Additionally, we offer SACS installation.

Additional Features SACS is based on the

Attribute-Based Encryption (SA-BE) method.

Thanks to SA-BE's ciphertext purification and

malware protection, only valid private keys

can be used to decrypt communications. This

section includes a security model and formal

algorithm definitions. SA-CS, which is based

on SABE, uses CP-ABE, which is based on

LSSS. The data editor encrypts regular data

that has been encrypted using CP-ABE

technology using a random key. The specific

access policy for encrypted data must be

verified before the sanitization process to

maintain its integrity.

SYSTEM ARCHITECTURE:

FIGURE 1. SACS architecture..

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1004

We show SACS architecture in Fig. 1, where

five kinds of independent entities are

involved. They are the authority, the data

publisher, the sanitizer, the receiver and the

cloud server.

 The authority manages and maintains

the whole system. In SACS, we regard

the authority as a trusted entity who

holds the master secret key. The

authority issues a unique private key

to each receiver who registers into this

system. Without loss of generality, we

assume that the authority neither

colludes with any other entities nor is

compromised.

 The data publisher owns the plain

data. He/she encrypts its plain data

with an encryption key (e.g., K) and

sets an access policy to deal with the

encryption key. Then the data

publisher sends the encrypted data (or

cipher data) to the sanitizer. Actually,

the publisher relies on this access

policy to conduct data access control.

Publishers are either honest or

malicious. Both honest and malicious

publishers execute the encryption

operation on the plain data, but a

malicious publisher might have extra

behaviors, such as distributing the

encryption key to some non-registered

receivers. This incurs a failure of

access control since some receivers

can access the data without valid

private key.

 The sanitizer is introduced to

transform the original cipher data into

the sanitized cipher data. Once getting

cipher data from the data publisher,

the sanitizer is instructed to do some

specific processing on these cipher

data. The processing includes two

parts. One is to check whether the

cipher data is under the claimed access

policy and the other is to sanitize the

cipher data with its encryption key K0

. Then the sanitizer sends the sanitized

cipher data to the cloud server for

storage. Such a sanitization operation

on the cipher data is to prevent

malicious publishers and invalid data

access. The sanitizer is an honest

party, which means it just executes the

sanitization following the sanitizing

algorithm but no malicious operations,

such as replacing/modifying the cipher

data. The sanitizer learns nothing

about the plain data.

 The receiver wants to access the plain

data. He/she can freely download the

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1005

cipher data that he/she is interested in

from the cloud server. Prior to

accessing the data, the receiver must

register into the system and ask for a

private key from the authority. When

the registered receiver owns

conditions satisfying the access policy,

it is valid. Only valid receivers can

access the plain data from the data

publisher. Receivers will share neither

their private keys nor the decrypted

plain data with other entities. Here, we

note that each receiver is unique.

 The cloud server provides a platform

for cipher data storage. The cipher

data stored in the cloud server can be

acquired by any receivers. The cloud

server just receives cipher data from

the sanitizer and sends the cipher data

to the receiver, while executes no

computation operation. The cloud

server will behave maliciously, e.g.,

delete the cipher data. Whether the

cloud server is curious or not gives no

effect on the security of SACS.

A. SANITIZED ATTRIBUTE-

BASED ENCRYPTION

The SACS is based on a notion of Sanitized

Attribute-based Encryption (SABE). SABE

allows to sanitize the ciphertext and prevents

malicious encryptors, such that only valid

private keys can be used to obtain the

message. This section gives formal algorithm

definitions and security model.

 Setup(; U). The setup algorithm takes

as input a security parameter and the

number of universal attributes U. It

returns system parameters Params and

a master secret key msk.

 KeyGen(S; msk;Params). The key

generation takes as input an attribute

set S, the master secret key msk and

the system parameters Params. It

returns the private key skS of S.

 Encrypt(P;M; Params). The

encryption algorithm takes as input an

access policy P, a message M and the

system parameter Params. It returns a

ciphertext CT ¼ Enc½P; M; Params.

 Sanitize(CT; Params). The

sanitization algorithm takes as input

the system parameter Params and a

ciphertext CT. It returns a sanitized

ciphertext CT0 ¼ San½Params; CT.

 Decrypt(CT0 ; skS; Params). The

decryption algorithm takes as input a

sanitized ciphertext CT0 for P;M and a

private key skS for S. If the attribute

set S satisfies the access policy P, the

decryption algorithm returns M ¼

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1006

Dec½CT0 ; skS; Params. Otherwise, it

returns ?. Correctness. We give the

correctness of Sanitized CP-ABE as

follows. For all Params; msk; S; P

such that the attribute set S satisfies

the access policy P, if skS KeyGen (S;

msk; Params) , CT Encrypt(P;M;

Params) and CT0 Sanitize(CT;

Params) , we have M ¼ DecryptðCT0

; skS; ParamsÞ

V PERFORMANCE ANALYSIS

We present a performance analysis of our

SACS protocol in terms of communication

complexity and computation time. Because

there are no comparable protocols in the

literature, we only evaluate our protocol in the

following analysis. To provide a fair analysis

of communications, consider four stages

excluding system initialization. We use jZpj,

jGj, and jGT j to denote the size of an element

in the sets Zp, G, and GT, respectively.

Furthermore, the size of the feature set S is

denoted by jSj and the length of the

pseudorandom generator output is denoted by

jPj. Table 2 summarizes the communication

cost results. In the receiver registration phase,

the communication cost is saved by the

private key assigned by the authority to the

receiver. The length of the private key is ð Þj

4 þ jSj Gj. In the encrypted data publishing

stage, the communication cost mainly comes

from the encrypted data, which is uploaded

from the data editor to the sanitizer. The size

of the encrypted data is ð Þj 1 þ m Gj þ 2jGT

jþjPj, where m is the measure of a particular

attribute set in the access policy. In the

encrypted data sanitization phase, the

communication cost is contributed by the

sanitized encrypted data sent from the

sanitizer to the cloud server. The size of the

sanitized encrypted data is the same as the

size of the encrypted data. In the data access

stage, the recipient does not need to send

anything to others, but needs to download the

sanitized encrypted data stored on the cloud

server. The communication cost is of course

the volume of sanitized encrypted data. Here

we do not consider the communication

process of the request initiated by the

recipient.

Then we consider different stages and

measure the computation time at each stage.

We implement the recipient registration

phase, the encrypted data publishing phase,

the encrypted data sanitization phase, and the

data access phase. The system initialization

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1007

phase is excluded because its calculation time

is independent of the above-mentioned

variable factors. fig. Numbers 2, 3, 4 and 5

show their corresponding calculation time,

respectively. In the recipient registration

stage, the calculation mainly comes from

generating the private key, which must take

the specified attribute as input. We then

change the number of attributes and run the

receiver registration phase algorithm

accordingly. In the stage of publishing

encrypted data, we focus on the

computational time to generate the encrypted

data, as we choose the simple format.

Fig no 2: Registration time.

Fig no 3: Cipher gen time.

Fig no 4: Sanitizing time

Fig no 5: Decryption time

Data with size of 10 KB. In terms of

construction in the computational time will be

associated with only the scale of a specific

attribute set in the access policy and hence we

execute trials with respect varying m. In the

Cipher Data Sanitizing phase, the

computational time is associated with both the

scale of a specific attribute set in the access

policy and the used attribute set. Here we

choose to fix the former to be 10 and vary the

latter. To test the computational time of the

Data Access phase, we fix the scale of a

specific attribute set in the access policy in the

sanitized cipher data to be 10 and vary the

number of attributes for the private key

generated in the Receiver Registration phase.

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1008

Then we test the decryption time in the Data

Access phase. Overall, these experiment

results show that the computational time in

each phase has a growth with increase of the

specified variable factor although the

amplitude variation is different.

CONCLUSION

We set out to study secure cloud storage in

the presence of malicious data publishers, a

very practical situation that has unfortunately

not been studied before in the literature. In

this setting, malicious data publishers create

data following a specified access control

policy, but the ciphertexts can be decrypted

by unauthorized users without the need for

valid keys. We design a system and its secure

architecture to allow protection against these

types of attacks. It is shown that our scheme is

secure under the Diffie-Hellman q-parallel

binary exponent assumption. We also provide

an implementation of our system for

performance analysis. We believe that this

work will open the way for future research on

cloud storage, as this idea is very practical.

We note that this idea will further encourage

the adoption of cloud storage in practice.

REFERANCES

[1] V. Goyal, O. Pandey, A. Sahai, and B.

Waters, “Attribute-based encryption for fine-

grained access control of encrypted data,” in

Proc. 13th ACM Conf. Comput. Commun.

Secur., 2006, pp. 89–98.

 [2] J. Bethencourt, A. Sahai, and B. Waters,

“Ciphertext-policy attribute-based

encryption,” in Proc. IEEE Symp. Secur.

Privacy, 2007, pp. 321–334.

[3] B. Waters, “Ciphertext-policy attribute-

based encryption: An expressive, efficient,

and provably secure realization,” in Proc. Int.

Workshop Public Key Cryptogr., 2011, pp.

53–70.

[4] S. Berger et al., “Security intelligence for

cloud management infrastructures,” IBM J.

Res. Develop., vol. 60, no. 4, pp. 11:1–11:13,

2016.

[5] Secure access control for cloud storage.

Accessed: Feb. 13, 2021. [Online]. Available:

https://www.research.ibm.com/haifa/

projects/storage/cloudstorage/secure_access.s

html.

[6] D. Boneh, C. Gentry, and B. Waters,

“Collusion resistant broadcast encryption with

short ciphertexts and private keys,” in Proc.

Annu. Int. Cryptol. Conf., 2005, pp. 258–275.

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1009

[7] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improved proxy re-encryption

schemes with applications to secure

distributed storage,” ACM Trans. Inf. Syst.

Secur., vol. 9, no. 1, pp. 1–30, 2006.

[8] L. Zhou, V. Varadharajan, and M.

Hitchens, “Achieving secure role-based

access control on encrypted data in cloud

storage,” IEEE Trans. Inf. Forensics Security,

vol. 8, no. 12, pp. 1947–1960, Dec. 2013.

[9] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and

J. Voas, “Attributebased access control,”

IEEE Comput., vol. 48, no. 2, pp. 85–88, Feb.

2015.

 [10] N. Attrapadung, B. Libert, and E. de

Panafieu, “Expressive keypolicy attribute-

based encryption with constant-size

ciphertexts,” in Proc. Int. Workshop Public

Key Cryptogr., 2011, pp. 90–108.

[11] Z. Wan, J. Liu, and R. H. Deng,

“HASBE: A hierarchical attributebased

solution for flexible and scalable access

control in cloud computing,” IEEE Trans. Inf.

Forensics Security, vol. 7, no. 2, pp. 743–754,

Apr. 2012.

[12] Y. Wu, Z. Wei, and R. H. Deng,

“Attribute-based access to scalable media in

cloud-assisted content sharing networks,”

IEEE Trans. Multimedia, vol. 15, no. 4, pp.

778–788, Jun. 2013.

[13] J. Hur, “Improving security and

efficiency in attribute-based data sharing,”

IEEE Trans. Knowl. Data Eng., vol. 25, no.

10, pp. 2271–2282, Oct. 2013.

 [14] G. Ateniese, D. H. Chou, B. de

Medeiros, and G. Tsudik, “Sanitizable

signatures,” in Proc. Eur. Symp. Res. Comput.

Secur., 2005, pp. 159–177.

[15] C. Brzuska et al., “Security of sanitizable

signatures revisited,” in Proc. Int. Workshop

Public Key Cryptogr., 2009, pp. 317–336.

[16] V. Fehr and M. Fischlin, “Sanitizable

signcryption: Sanitization over encrypted data

(full version),” IACR Cryptol. ePrint Arch.,

vol. 2015, 2015, Art. no. 765.

 [17] R. W. F. Lai, T. Zhang, S. S. M. Chow,

and D. Schroder, “Efficient € sanitizable

signatures without random Oracles,” in Proc.

Eur. Symp. Res. Comput. Secur., 2016, pp.

363–380.

[18] M. T. Beck et al., “Practical strongly

invisible and strongly accountable sanitizable

signatures,” in Proc. Australas. Conf. Inf.

Secur. Privacy, 2017, pp. 437–452.

Volume 14, Issue 05, May2024 ISSN 2457-0362 Page 1010

[19] J. Camenisch, D. Derler, S. Krenn, H. C.

Pohls, K. Samelin, and € D. Slamanig,

“Chameleon-hashes with ephemeral trapdoors

- and applications to invisible sanitizable

signatures,” in Proc. Int. Workshop Public

Key Cryptogr., 2017, pp. 152–182.

 [20] N. Fleischhacker, J. Krupp, G.

Malavolta, J. Schneider, D. Schroder, € and

M. Simkin, “Efficient unlinkable sanitizable

signatures from signatures with re-

randomizable keys,” in Proc. Int. Workshop

Public Key Cryptogr., 2016, pp. 301–330.

