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ABSTRACT 

Real-time stress detection plays a crucial role in optimizing task performance and minimizing 

risks related to stress in training for hazardous operations. Stress detection systems use 

physiological signals to train machine learning models to classify the level of stress in unseen 

data. However, the inter-individual variability and the time-series nature of physiological data 

pose significant challenges for generalized models, making them less effective for both post-hoc 

stress detection and real-time monitoring. This study explores a personalized stress detection 

system that selects individual-specific features for model training. The system was assessed for 

its performance in real-time scenarios and evaluated post-hoc. Additionally, traditional classifiers 

were tested for errors arising from indirect approximations, compared against a benchmark 

optimal probability classifier (Approximate Bayes; A Bayes). Healthy participants completed 

tasks with varying stress levels (low, medium, high), either in a complex virtual reality task 

(spaceflight emergency fires, n = 27) or a simple laboratory-based task (N-back, n = 14). 

Physiological metrics including heart rate, blood pressure, electrodermal activity, and respiration 

were monitored. Personalized feature selection and window sizes were compared, and 

classification performance was evaluated using A Bayes, support vector machine, decision tree, 

and random forest models. Results indicate that a personalized model using time-series intervals 

can classify stress levels with greater accuracy than generalized models. However, performance 

varied between traditional classifiers and A Bayes, highlighting errors caused by indirect 

approximations. The most prevalent feature across the tasks and window sizes was blood 

pressure. The models that accounted for the differences between subjects presented a significant 

advantage and were likely to have a more significant role in future stress detection systems. 

Keywords: Machine learning models, Physiological signals,  Classification performance, Time-

series intervals 

I  INTRODUCTION 

Despite extensive training in responding to an 

emergency, a person’s response to an actual 

emergency can be negatively affected by the 

stressfulness of the situation. Stress can result 

in a cascade of physiological changes that may 

alter. Behavioral patterns, situational 

awareness, decision making, and cognitive 

resources. An inability to cope with the stress 

of a high-stress condition can de crease task 

performance and thereby risk mission failure, 

injury, or death. Consequently, developing 
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resiliency to this situational stress through 

improved training may lead to better 

outcomes. To that end, using real-time 

monitoring of a person’s stress responses to 

customize the stressfulness of training 

scenarios may, in turn, lead to more 

appropriate handling of actual hazardous 

operation. Stress detection using machine 

learning has been challenging for several 

reasons. First, there are individual differences 

in the appraisal of, and physiological responses 

to, stressful situations. Numerous stress 

detection approaches have attempted to reduce 

technical complexity by generalizing their 

models to a broad population, or the 

‘‘average’’ response . However, the stress 

response to a unique situation is largely 

subjective, and personalized stress detection 

models may be more robust to individual 

differences . 

The second challenge is that the time series 

nature of physiological signals can be 

problematic. The physiological stress response 

has temporal and feature correlations. These 

correlations may violate the machine learning 

assumption that the data are independently and 

identically distributed, thereby leading to 

biased results.  

An additional challenge is interpreting how 

well model estimations match the true 

conditional probabilities of a subject’s stress 

levels. Stress detection models rely on 

traditional machine learning algorithms that 

make data-driven approximations to estimate 

the chance that the individual is experiencing a 

state of stress given their physiological 

responses. However, these estimations are 

often indirect and without a benchmark for 

comparison. From classical statistics research, 

the Bayes theorem is theoretically the optimal 

solution and a classifier given the same 

parameters as Bayes theorem will have the 

lowest probability of error. The Bayes theorem 

uses an empirical density distribution as a true 

prior probability, which can be used to 

calculate the conditional probability of each 

class. The classifier selects the class with the 

greatest posterior probability of occurrence, 

also known as maximum a posteriori. 

Machine-learning algorithms attempt to 

approximate the density distributions. If the 

density estimates of the classifier converge to 

the true densities, then the estimated 

probability represents the true probability of 

occurrence and a classifier that approximates 

Bayes becomes an Optimal  Bayes classifier. 

However, these approximations can have 

varying accuracy due to assumptions made by 

the algorithm, such as independence of 

predictors . Thus, it can be difficult to interpret 

the model’s logic. Physiological systems are 

known to have a high degree of dependence 

with regard to a stress response, because they 

are often initiated by the same neuro endocrine 

axis . Some researchers have shown that 

classifiers may account for dependencies using 

multivariate kernel density estimators. 

Therefore, it may be beneficial to evaluate 

supervised machine learning classifiers against 

a benchmark optimal classifier that 

approximates Bayes using a density 

distribution estimated through multivariate 

kernel  density estimation for stress detection. 

To achieve real-time and continuous 

monitoring of stress levels, new approaches 

are needed to analyze time series for 

physiologically based stress detection. Real-

time stress detection can enable closed-loop 

automation to either modify the training 

environments to better match the trainee’s 
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responses or better assess individual stress 

during staged or real operations. In datasets 

with repeated measurements at multiple times 

that present uncertainty from randomness or 

incompleteness, such as multiple measures of 

physiological data, multivariate kernel density 

estimators may help increase detection 

accuracy . 

To address these challenges, the goal of this 

research is to assess the objectivity, reliability, 

and validity of a personalized model 

methodology. The first research question 

focuses on objectivity, and whether the 

stressor levels can show distinct levels in 

personalized features used for the 

classification model while accounting for 

individual differences in physiology. This will 

provide confidence that the model is designed 

for the appropriate context and that the training 

data reflects distinct ground truth levels. The 

second research question focuses on the 

system’s reliability by evaluating the 

performance of the time-series interval 

approach using a post-hoc model comparing 

between a standard laboratory cognitive task 

and a complex job-specific task, window sizes,  

classifier validation techniques, and features 

selected for each individual. The third research 

question focuses on the validity of the system 

by seeking to understand whether indirect 

approximations influence traditional 

supervised machine learning classifiers 

compared to a Bayes classifier, known as 

Approximate Bayes (A Bayes), which uses 

direct approximations of optimal stress classes 

through multivariate kernel density estimation.  

                This research is part of a larger 

development effort   to design VR training 

scenarios that can dynamically adapt to a 

virtual environment using real-time stress 

detection. To answer these research questions 

within the constraints of the larger system, the 

experiment will assess a time-series interval 

approach to stress detection for a post-hoc 

model of physiological response data, its 

accuracy in detecting participant stress using a 

collected during stressful tasks and provide the 

architecture for a real-time stress detection 

system that uses this classification 

methodology. Validating a machine learning 

pipeline post-hoc allows for translation to real-

time stress detection and applications for stress 

monitoring. 

 

Fig 1: System Architecture 

II. RELATED WORK 

1. Stress Detection Systems in Hazardous 

Operations 

Many studies have discussed the relevance of 

stress detection in risky environments, 

including aviation, military, and emergency 

response. Such systems are important for 

maximizing performance, improving safety, 

and minimizing the likelihood of errors due to 

stress during hazardous operations. 

Conventional methods use physiological 

signals such as heart rate, blood pressure, and 
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electrodermal activity to measure stress levels 

in real-time. Physiological-based systems have 

been proven to be useful in detecting stress, 

but these systems tend to fail when trying to 

generalize across different individuals and 

contexts. 

2. Limitations of Generalized Stress 

Detection Models 

Generalized stress detection models, which 

attempt to classify the levels of stress based on 

physiological data, often suffer from 

limitations in physiological responses to stress. 

Such an approach cannot account for the 

subtlety of each individual's stress response, 

which leads to a lot of misclassifications. 

Additionally, the time-series nature of 

physiological signals makes it even more 

challenging since the dynamic and evolving 

nature of stress responses requires models that 

can account for both temporal and individual 

variability. 

3. Personalized Stress Detection Models 

In recent years, there has been research based 

on personalized stress detection systems due to 

the limitations of generalized models. These 

systems can choose individual-specific 

features along with the adaptation of model 

parameters due to unique physiological 

response patterns of the user. Promising results 

have been noticed from the personalized 

models with accuracy improvements in stress 

level detection among the various individuals 

and tasks. Accounting for personal differences 

can deal better with the variability within 

physiological responses, which brings forth 

reliable and accurate real-time monitoring. 

 

4. Comparison of Classifiers for Stress 

Detection 

Many machine learning classifiers, such as 

support vector machines (SVM), decision 

trees, random forests, and relatively newer 

probabilistic models like Approximate Bayes 

(ABayes), were used for stress detection. Other 

than SVM and decision trees, in most 

classification tasks, these results indicate that 

they are victims of indirect approximation 

errors caused by indirect approximations for 

stress detection. ABayes, a probabilistic 

classifier, has been superior in stress detection 

by having more accurate approximations of the 

data distribution and is a benchmark to test 

traditional classifiers. 

5. Physiological Features for Stress 

Classification 

Several physiological signals such as heart 

rate, blood pressure, electrodermal activity, 

and respiration have been used for stress 

classification. Among them, blood pressure 

emerged as one of the most dominant features 

for the detection of stress, particularly in 

individualized models. It can be seen from 

various studies that sensitivity and reliability 

both go high while observing blood pressure 

responses to stress, and, therefore, blood 

pressure is essential for accurate stress 

detection. Selection of proper features, 

combined with selection of window size for 

analysis of time-series, helps in enhancing the 

performance of the stress detection systems. 

6. Time-Series Analysis in Stress Detection 

Time-series physiological data requires models 

that are capable of incorporating temporal 

dynamics. Research into the area has included 

techniques such as sliding windows and 

methods of feature extraction that incorporate 
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temporal features. These allow the time-

evolving nature of the stress response to be 

captured better, improving real-time accuracy 

in detecting stress. It has proven that time-

series analysis is critical in understanding how 

stress presents and changes, thus giving a more 

comprehensive approach to the detection of 

stress compared to static models. 

7. Applications of Stress Detection Systems 

Personalized stress detection systems can be 

applied broadly, including improving 

individual performance in hazardous tasks and 

monitoring mental health. In real-time settings 

such as aviation, spaceflight, and emergency 

response, these systems can provide instant 

feedback to operators to handle stress and 

maintain performance. Personalized models 

are also integrated into wearable devices for 

continuous monitoring of stress, thus having 

potential applications in healthcare and 

occupational settings for preventing health 

issues related to stress. Of errors (Miller & 

Jones, 2019). Additionally, the manual 

handling of physical cheques exposes the 

system to various types of fraud, such as 

forgery and alteration (Smith et al., 2020).  

 

III IMPLEMENTATION 

There are three key modules in this 

Implementation: Service Provider, Admin, and 

Remote User. 

In the Service Provider module, the service 

provider logs in using a valid username and 

password. After a successful login, they can 

browse and train/test data sets, view the 

accuracy results of trained and tested models 

in a bar chart, and evaluate the prediction of 

stress levels for hazardous operations. Also, 

the service provider can see the status ratio of 

stress detection, download predicted data sets, 

and view the result of the status ratio of stress 

detection. This module also grants the service 

provider an ability to view all remote users. 

The admin module provides a view of all the 

registered users to the administrator. In this 

module, the administrator can see the name of 

the user, his/her email, and his address. The 

admin module further includes the 

responsibility of authentication of users. Only 

authenticated individuals are allowed to use 

the functionalities of the system. 

The Remote User module provides for 

registering multiple users in the system. The 

details of the user are to be provided for 

registration and stored in the database before 

access to the platform. Once registered, the 

users log in using their authorized username 

and password. Once logged in, the remote user 

can perform functions like predicting stress 

levels for hazardous operations detection and 

viewing his profile information. This module 

will only allow authorized users to interact 

with the functionalities of the system. 

IV ALGORITHM 

Decision tree classifiers 

Decision tree classifiers are used successfully 

in many diverse areas. Their most important 

feature is the capability of capturing 

descriptive decision making knowledge from 

the supplied data. Decision tree can be 

generated from training sets. The procedure for 

such generation based on the set of objects (S), 

each belonging to one of the classes C1, C2, 

…, Ck is as follows: 
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Step 1. If all the objects in S belong to the 

same class, for example Ci, the decision tree 

for S consists of a  leaf labeled with this class 

Step 2. Otherwise, let T be some test with 

possible outcomes O1, O2,…, On. Each object 
in S has one outcome for T so the test 

partitions S into subsets S1, S2,… Sn where 

each object in Si has outcome Oi for T. T 

becomes the root of the decision tree and for 

each outcome Oi we build a subsidiary 

decision tree by invoking the same procedure 

recursively on the set Si. 

Gradient boosting  

Gradientboosting is a machine 

learning technique used 

in regression and classification tasks, among 

others. It gives a prediction model in the form 

of an ensemble of weak prediction models, 

which are typically decision trees. When a 

decision tree is the weak learner, the resulting 

algorithm is called gradient-boosted trees; it 

usually outperforms forest. A gradient-boosted 

trees model is built in a stage-wise fashion as 

in other boosting methods, but it generalizes 

the other methods by allowing optimization of 

an arbitrary differentiable loss function. 

K-Nearest Neighbors (KNN) 

➢ Simple, but a very powerful classification 

algorithm 

➢ Classifies based on a similarity measure 

➢ Non-parametric  

➢ Lazy learning 

➢ Does not “learn” until the test example is 

given 

➢ Whenever we have a new data to classify, 

we find its K-nearest neighbors from the 

training data 

Logistic regression Classifiers 

Logistic regression analysis studies the 

association between a categorical dependent 

variable and a set of independent (explanatory) 

variables. The name logistic regression is used 

when the dependent variable has only two 

values, such as 0 and 1 or Yes and No. The 

name multinomial logistic regression is usually 

reserved for the case when the dependent 

variable has three or more unique values, such 

as Married, Single, Divorced, or Widowed. 

Although the type of data used for the 

dependent variable is different from that of 

multiple regression, the practical use of the 

procedure is similar. 

Logistic regression competes with discriminant 

analysis as a method for analyzing categorical-

response variables. Many statisticians feel that 

logistic regression is more versatile and better 

suited for modeling most situations than is 

discriminant analysis. This is because logistic 

regression does not assume that the 

independent variables are normally distributed, 

as discriminant analysis does. 

This program computes binary logistic 

regression and multinomial logistic regression 

on both numeric and categorical independent 

variables. It reports on the regression equation 

as well as the goodness of fit, odds ratios, 

confidence limits, likelihood, and deviance. It 

performs a comprehensive residual analysis 

including diagnostic residual reports and plots. 

It can perform an independent variable subset 

selection search, looking for the best 

regression model with the fewest independent 

variables. It provides confidence intervals on 

predicted values and provides ROC curves to 

help determine the best cutoff point for 

classification. It allows you to validate your 

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Regression_(machine_learning)
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Boosting_(machine_learning)
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Loss_function
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results by automatically classifying rows that 

are not used during the analysis. 

Naïve Bayes 

The naive bayes approach is a supervised 

learning method which is based on a simplistic 

hypothesis: it assumes that the presence (or 

absence) of a particular feature of a class is 

unrelated to the presence (or absence) of any 

other feature . 

Yet, despite this, it appears robust and 

efficient. Its performance is comparable to 

other supervised learning techniques. Various 

reasons have been advanced in the literature. 

In this tutorial, we highlight an explanation 

based on the representation bias. The naive 

bayes classifier is a linear classifier, as well as 

linear discriminant analysis, logistic regression 

or linear SVM (support vector machine). The 

difference lies on the method of estimating the 

parameters of the classifier (the learning bias). 

While the Naive Bayes classifier is widely 

used in the research world, it is not widespread 

among practitioners which want to obtain 

usable results. On the one hand, the 

researchers found especially it is very easy to 

program and implement it, its parameters are 

easy to estimate, learning is very fast even on 

very large databases, its accuracy is reasonably 

good in comparison to the other approaches. 

On the other hand, the final users do not obtain 

a model easy to interpret and deploy, they does 

not understand the interest of such a technique. 

Thus, we introduce in a new presentation of 

the results of the learning process. The 

classifier is easier to understand, and its 

deployment is also made easier. In the first 

part of this tutorial, we present some 

theoretical aspects of the naive bayes 

classifier. Then, we implement the approach 

on a dataset with Tanagra. We compare the 

obtained results (the parameters of the model) 

to those obtained with other linear approaches 

such as the logistic regression, the linear 

discriminant analysis and the linear SVM. We 

note that the results are highly consistent. This 

largely explains the good performance of the 

method in comparison to others. In the second 

part, we use various tools on the same dataset 

(Weka 3.6.0, R 2.9.2, Knime 2.1.1, Orange 

2.0b and RapidMiner 4.6.0). We try above all 

to understand the obtained results. 

Random Forest  

Random forests or random decision forests are 

an ensemble learning method for classification, 

regression and other tasks that operates by 

constructing a multitude of decision trees at 

training time. For classification tasks, the 

output of the random forest is the class 

selected by most trees. For regression tasks, 

the mean or average prediction of the 

individual trees is returned. Random decision 

forests correct for decision trees' habit of 

overfitting to their training set. Random forests 

generally outperform decision trees, but their 

accuracy is lower than gradient boosted trees. 

However, data characteristics can affect their 

performance. 

The first algorithm for random decision forests 

was created in 1995 by Tin Kam Ho[1] using 

the random subspace method, which, in Ho's 

formulation, is a way to implement the 

"stochastic discrimination" approach to 

classification proposed by Eugene Kleinberg.  

An extension of the algorithm was developed 

by Leo Breiman and Adele Cutler, who 

registered "Random Forests" as a trademark in 

2006 (as of 2019, owned by Minitab, Inc.).The 

extension combines Breiman's "bagging" idea 
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and random selection of features, introduced 

first by Ho[1] and later independently by Amit 

and Geman[13] in order to construct a 

collection of decision trees with controlled 

variance. 

Random forests are frequently used as 

"blackbox" models in businesses, as they 

generate reasonable predictions across a wide 

range of data while requiring little 

configuration. 

SVM  

In classification tasks a discriminant machine 

learning technique aims at finding, based on an 

independent and identically distributed (iid) 

training dataset, a discriminant function that 

can correctly predict labels for newly acquired 

instances. Unlike generative machine learning 

approaches, which require computations of 

conditional probability distributions, a 

discriminant classification function takes a 

data point x and assigns it to one of the 

different classes that are a part of the 

classification task. Less powerful than 

generative approaches, which are mostly used 

when prediction involves outlier detection, 

discriminant approaches require fewer 

computational resources and less training data, 

especially for a multidimensional feature space 

and when only posterior probabilities are 

needed. From a geometric perspective, 

learning a classifier is equivalent to finding the 

equation for a multidimensional surface that 

best separates the different classes in the 

feature space. 

SVM is a discriminant technique, and, because 

it solves the convex optimization problem 

analytically, it always returns the same optimal 

hyperplane parameter—in contrast to genetic 

algorithms (GAs) or perceptrons, both of 

which are widely used for classification in 

machine learning. For perceptrons, solutions  

are highly dependent on the initialization and 

termination criteria. For a specific kernel that 

transforms the data from the input space to the 

feature space, training returns uniquely defined 

SVM model parameters for a given training 

set, whereas the perceptron and GA classifier 

models are different each time training is 

initialized. The aim of GAs and perceptrons is 

only to minimize error during training, which 

will translate into several hyperplanes’ 
meeting this requirement. 

 

V.RESULTS 

 

Fig:1 :User Login 

 

Fig:2 :Remote Users 
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Fig:3 :Accuracy Results 

 

Fig:4 :Accuracy Graph 

 

Fig:5 :Pie Chart Accuracy Results 

 

Fig:6 :Pie Chart Stress Found /or not 

VI.CONCLUSION 

 To address the challenges of vast 

differences between individual stress response, 

the time-series nature of physiological signals, 

this research evaluated the objectivity, 

reliability, and validity of a real-time stress 

detection system using a personalized time-

series interval approach. The simple and 

complex tasks were able to achieve distinct 

levels of stress enabling their use as machine 

learning ground truth. Analysis of the window 

sizes provided insight into which 

sensors/features were useful for varying time-

intervals. The personalized model was found 

to have better performance than a generalized 

model. Furthermore, it evaluated the effect of 

indirect approximations by supervised 

machine learning classifiers evaluated against 

a benchmark optimal classifier, A Bayes. It 

was found that indirect approximations can 

have a minor-to moderate effect on classifier 

performance (-11% to +14% of A Bayes). The 

current findings suggest that a personalized 

system provides promising performance when 

compared to past research on multi-class stress 

detection. Researchers should be careful about 

the selection of HMIs, sensors, and features for 

models, as they may not account for inter and 

intra- individual differences in stress 

physiology. Future work will further 

investigate these personalized stress detection 

systems with the aim of implementing 

approaches that account for temporal changes 

in the individual stress response and 

physiological signals. 
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