
Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 383

HIGH SPEED 32 BIT VEDIC MULTPLIER USING VERILOG

D. Edukondalu1, D. Swathi2, Degala Jayasree2, Emani Sairaj2, Srilaxmi Ganna2

1Assistant professor,2UG Student, Department of Electronics and Communication Engineering

1,2Malla Reddy Engineering College and Management Sciences, Kistapur, Medchal-50140l,

Hyderabad, Telangana, India.

Abstract

This paper presents a high-speed Vedic multiplier based on the Urdhva Tiryagbhyam sutra of

Vedic mathematics that incorporates a novel adder based on Quaternary Signed digit number

system. Three operations are inherent in multiplication: partial products generation, partial

products reduction and addition. Fast adder architecture therefore greatly enhances the speed

of the overall process. Quaternary logic adder architecture is proposed that works on a hybrid

of binary and quaternary number systems. A given binary string is first divided into

quaternary digits of 2 bits each followed by parallel addition reducing the carry propagation

delay. The design doesn’t require a radix conversion module as the sum is directly generated

in binary using the novel concept of an adjusting bit. The proposed multiplier design is

compared with a Vedic multiplier based on multi voltage or multi value logic [MVL], Vedic

Multiplier that incorporates a QSD adder with a conversion module for quaternary to binary

conversion, Vedic multiplier that uses Carry Select Adder and a commonly used fast

multiplication mechanism such as Booth multiplier.

Keywords: Quaternary Signed Digit adder [QSD]; Urdhva Tiryagbhyam; Vedic Mathematics

I. Introduction

One of the primary features that help us

determine the computational power of a

processor is the speed of its arithmetic

unit. An important function of an

arithmetic block is multiplication because,

in most mathematical computations, it

forms the bulk of the execution time. Thus,

the development of a fast multiplier has

been a key research area for a long time.

Some of the important algorithms

proposed for fast multiplication in

literature are Array, Booth and Wallace

multipliers [1]-[5]. Vedic Mathematics [6,

7] is a methodology of arithmetic rules that

allows for more efficient implementations

regarding speed. Multiplication in this

methodology consists of three steps:

generation of partial products, reduction of

partial products, and finally carrypropagate

addition. Multiplier design based on Vedic

mathematics has many advantages as the

partial products and sums are generated in

one step, which reduces the carry

propagation from LSB to MSB. This

feature helps in scaling the design for

larger inputs without proportionally

increasing the propagation delay as all

smaller blocks of the design work

concurrently. References [8], [9] and [11]

compared Vedic Multiplier with other

multiplier architectures namely Booth,

Array and Wallace on the basis of delay

and power consumption. Vedic multiplier

showed improvements in both the

parameters over other architectures. Thus,

many implementations of multiplication

algorithms based on Vedic sutras have

been reported in literature [10]-[12]. Vedic

multiplier schemes proposed in literature

are based on Urdhva Tiryagbhyam and

Nikhilam sutras of Vedic Mathematics. As

Nikhilam sutra is only efficient for inputs

that are close to the power of 10, in this

paper a design to perform high-speed

multiplication based on the Urdhva

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 384

Tiryagbhyam sutra of Vedic Mathematics

which is generalized method for all

numbers, has been presented. The final

step, carry-propagate addition, requires a

fast adder scheme because it forms a part

of the critical path. A variety of adder

schemes have been proposed in literature

to optimize the performance of Vedic

multiplier [13]. Adder based on QSD

shows an improvement in speed over other

state of the art adders [14, 15]. Earlier

implementations of QSD adder were based

on Multi Voltage or Multi Value Logic

(MVL) [16]. The difficulty in application

of quaternary addition outside MVL (Multi

Voltage logic) is that, the adder is only a

small unit of the design whose outputs will

needed to be converted back to binary for

further processing. However, use of a

conversion module undermines the

advantages gained in speed by using QSD.

In this paper, a novel implementation of an

adder based on QSD is proposed, which

reduces the carry propagation delay in the

design by making use of carry free

arithmetic. The proposed adder design

works on a hybrid of binary and

quaternary number systems wherein the

sum is directly generated in binary using

the concept of an adjusting bit, eliminating

the conversion module. The design can be

scaled to larger bit implementations such

as 32, 64, 128 or more with minimal

increase in propagation delay owing to the

parallelism prevalent in the design. We

have compared our design with a Vedic

multiplier based on MVL logic that uses a

ripple carry adder [16], Vedic Multiplier

that incorporates a QSD adder and a

conversion module for quaternary to

binary conversion, Vedic multiplier that

uses state of the art fast adder scheme such

as Carry select adder [17] and a commonly

used fast multiplication mechanism such

as Booth multiplier [18], to prove the

feasibility of our design across important

comparison points.

II. BASIC TERMINOLOGY

A. Urdhva Tiryagbhyam (UT) Sutra The

UT sutra is an ancient Vedic Mathematics

sutra that can be used for multiplication of

two numbers in any number system. It is

based on “Vertical and Crosswise”

multiplication. A 2x2 multiplier based on

UT sutra is depicted in Fig. 1 and Fig. 2,

where X and Y represent inputs while Z

corresponds to output. Stepwise procedure

is outlined below.

Step1: Vertical Multiplication: The least

significant digits of the multiplicand and

the multiplier are multiplied, as in (1).

Z0=X0.Y0 (1)

Step2: Crosswise Multiplication and

Addition: Z1, in (2), is obtained by cross

multiplying X1 and Y0, and Y1 and X0

and subsequently adding the two products.

In this stage a carry C1, as in (3), might be

generated, that is propagated to the next

step.

Z1= (X0.Y1) ⊕ (X1.Y0) (2)

C1=X0.X1.Y0.Y1 (3)

Step3: Vertical Multiplication and

Addition: The most significant digits of

the multiplicand and the multiplier are

multiplied, and the product is added with

the carry of the previous step to obtain Z3

and Z2, as in (4) and (5) respectively.

Z2= (X1.Y1) ⊕ C1 (4)

Z3= X0.X1.Y0.Y1 (5)

 The final result is concatenation of Z3,

Z2, Z1 and Z0. Fig. 1. Vertical and

Crosswise multiplication The logic circuit

for 2x2 UT multiplier is shown Fig. 2. Fig.

2. 2x2 UT multiplier.

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 385

Fig. 1. Vertical and Crosswise

multiplication

The logic circuit for 2x2 UT multiplier is

shown Fig. 2.

Fig. 2. 2x2 UT multiplier

B. Quaternary Signed Digit (QSD

number system)

The QSD is a radix-4 number system that

provides the benefit of faster arithmetic

calculations over binary computation, as it

eliminates rippling of carry during

addition. Every number in QSD can be

represented using digits from the set {-3,-

2,-1, 0, 1, 2, 3}. Being a higher radix

number system it utilizes less number of

gates and hence saves on time and reduces

circuit complexity. The stages involved in

addition of two numbers in QSD are:

Stage1: Generation of intermediate carry

and sum: When two digits are added in

QSD number system, the resulting sum

ranges between -6 to +6. Numbers with

magnitude higher than 3 are represented by

multiple digits with least significant digit

representing sum and the next digit

corresponds to carry. Also, every number

in QSD can have multiple representations

[14, 15]. The representation is chosen such

that the magnitude of sum digit is 2 or less

than 2 and the magnitude of carry digit is 1

or less than 1, the reason for which is

explained in the next stage. Stage2: The

intermediate sum and carry have a limit

fixed on their magnitude because this

allows carry free addition in the second

step. The result can be obtained directly by

adding the sum digit with the carry of the

lower significant digit [14, 15].

III. PROPOSED DESIGN

A. 4x4 Multiplier

Block diagram of a 4x4 multiplier is

shown in Fig. 3. In this multiplier, four

2x2 multipliers are arranged

systematically. Each multiplier accepts

four input bits; two bits from multiplicand

and other two bits from multiplier.

Addition of partial products is done using

two four bit Quaternary adders, a two-bit

adder and a half adder. The final result is

obtained by concatenating the least

significant two bits of the first multiplier,

four sum bits of the second four-bit

Quaternary adder and the sum bits of two-

bit adder.

Table I shows all intermediate and final

results involved in the multiplication

process of two binary numbers, A =

(1111)2 and B = (1001)2. The data flow in

the proposed 4x4 multiplier is given

below: 1) A[1:0] and B[1:0], A[3:2] and

B[1:0], A[1:0] and B[3:2], and A[3:2] and

B[3:2] are multiplied by 2x2 Vedic

multipliers, giving output D0[3:0],

D1[3:0], D2[3:0] and D3[3:0] respectively.

Fig. 3. Proposed 4x4 Multiplier

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 386

TABLE I. MULTIPLICATION RESULT

OF TWO 4 BIT BINARY NUMBERS

USING THE PROPOSED DESIGN

2) D1 [3:0] and D2[3:0] are added by the

proposed 4 bit QSD adder, giving D4[3:0]

and a carry out as the outputs. 3) D4[3:0]

and {D3[1:0], D0[3:2]} are added by the

second 4 bit QSD adder, giving D5[3:0]

and a carry out as the outputs. 4) The half

adder is used to add the carry outs of the

QSD adders. The output obtained is fed to

the 2 Bit Adder along with D3[3:2]. 5) The

result, C, in binary is obtained by

concatenation of output of 2 Bit Adder,

D5[3:0] and D0[1:0]. The proposed design

can be extended to multiply both negative

and positive integers by an addition of a

sign bit in both inputs. An XOR logic can

then be used to compute the sign bit of the

final output. The multiplication of the

magnitudes will proceed simultaneously in

a similar manner to the example described

above.

B. 32x32 multiplier

The 4x4 multiplier design can be scaled to

multiply larger numbers as shown in Fig.

4, where the design is scaled up for a 32

bit multiplier.

C. Proposed adder design based on QSD

In this paper, a novel idea of an adder,

based on QSD (Quaternary Signed Digit)

is proposed. The algorithm for the

proposed adder uses a hybrid of quaternary

and binary number systems. The outputs

from smaller multipliers are obtained as

binary strings. Inside the addition module,

this string is broken into quaternary digits

of two bits each.

Fig. 4. Proposed 32x32 Multiplier

TABLE II. CONVERSION OF A

QUATERNARY NUMBER TO BINARY

NUMBER SYSTEM

Addition using QSD allows us to reduce

the carry propagation delay by making use

of carry free arithmetic i.e. the carry

doesn’t ripple past the subsequent

quaternary digit. Especially for higher bit

input strings this method is extremely

efficient. The difficulty in application of

quaternary addition outside MVL (Multi

Voltage logic) is that the least significant 2

bits of the binary representation of the

quaternary digits can’t be directly

concatenated to form an output binary

string for every case as depicted in Table

II. Each string would have to be read

individually and a conversion module that

converts quaternary to binary would have

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 387

to be employed. To overcome this

limitation, the concept of an adjusting bit

has been introduced.

The Intermediate sum lies in the range [0,

6], as the operands are unsigned numbers.

From [16], for quaternary addition to be

carry free beyond the first stage, the

intermediate sum can’t be greater than 2.

To ensure this stipulation holds true, the (1

)4 representation of 3 needs to be chosen

while adding. However, this represents a

blocking case when converting the final

output string back into binary as it

prohibits us from simply concatenating the

lower two bits of quaternary output strings

to get the binary equivalent.

For addition of unsigned numbers, if the

(03)4 representation would have been

used, direct concatenation of results could

have been possible. But, then that

wouldn’t have always been carry free after

the initial stage. Thus, the concept of an

adjusting bit has been devised to solve the

dilemma of which representation of 3 to

use, such that both carry free addition and

concatenation of output string bits to get

the final output can be realized in the same

design. The solution to the problem

described above, is that the (03)4

representation of 3 is required to be taken

instead of the (1)4 representation in some

cases. But, determining when such a

change is required before proceeding with

the addition will increase the delay of the

design and be counter-productive. Thus,

the (1)4 representation of 3 is always

selected in stage 1, to satisfy necessary

conditions for carry free arithmetic. While

necessary adjustments are made in stage 2

if (03)4 representation was to be taken, the

need for such an adjustment is determined

via an adjusting bit.

(b) Stage 2

 Fig. 5. Proposed Adder

The proposed adder works in two stages,

as shown in Fig. 5. 1) In the first stage, as

in Fig. 5(a), every individual digit at the

same position in the quaternary

representation of two n-bit numbers A and

B is added using a 2 Bit Adder to generate

a sum. This sum lies in the range [0, 6].

From the sum obtained from the adder, the

intermediate sum and intermediate carry

for the next stage are calculated in parallel

using 2x1 multiplexers. The logic for the

selection of the representation of sum and

carry has been explained in [16].

The adjusting bit is also computed in

parallel with the addition process. The

input to the adjusting bit calculation block

for every quaternary digit addition are the

previous two quaternary digits of A and B

signified by [n-2: n-5]. 2) Second stage has

two modules as shown in Fig. 5(b). One is

a one-bit module that performs the

computation (A+BC). In this case A would

be LSB of intermediate sum, B would be

carry from the previous quaternary digit

addition and C would be the adjusting bit.

The other module will be a half adder

which will add the carry from the (A+B-C)

module and the bit to the left of the least

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 388

significant bit of the intermediate sum. As

for the final concatenation, the sign bit

would not be used owing to the

adjustments proposed in the design.

IV.SIMULATION RESULTS

Figure 6 : RTL Schematic

Figure 7: simulation outcome

Figure 8: Design summary

Figure 9: Time summary

V. CONCLUSION

It can be concluded that the design when

scaled to higher bits only shows a marginal

rise in delay due to its core strengths.

Firstly, the parallelism involved in its

partial product generation. Secondly,

reduction of carry propagation delay in the

novel adder it incorporates. Due to the use

of QSD, the design is able to incorporate

carry free arithmetic while eliminating

radix conversion module speed overhead

by integrating concept of adjusting bit

logic in its architecture. The proposed

design showed an increase in

implementation area over some designs

due to increased parallelism even in finer

nuances of the architecture. The proposed

design is targeted towards digital systems

requiring high throughput and low latency

at the cost of area overhead. For example,

in a DSP system, operations such as Fast

Fourier Transform, Convolution, Filtering

and Discrete Wavelet transform etc.

Multipliers play a key role in determining

the speed of the system. Similarly, this

architecture would be a good candidate to

be implemented as a large part of systems

like DCT, Central Processing Unit (CPU),

MAC (Multiply and Accumulate) Unit,

Image Processors where high-speed

multiplications are critical to the

performance of the system. It can also be

observed that despite the objective of

decreasing the delay, the proposed design

performs better than most designs

compared in terms of power for lower

input bit sizes [16 and 32 bit]. Although it

consumes more power than other designs

higher input bit sizes [64 and 128 bit], it is

justifiable when factored in with

advantages gained in speed for higher

input bits.

REFERENCES

[1]. GarimaRawat, KhyatiRathore,

SiddharthGoyal,Shefali Kala and

Poornima Mittal, (2015). “Design

andAnalysis of ALU: Vedic

Mathematics”. IEEE Int. Conf. on

Computing, Communication and

Volume 12, Issue 05, May 2022 ISSN 2457-0362 Page 389

Automation (ICCCA2015), pp. 1372-

1376.

[2]. Rahul Nimje and ShardaMungale,

(2014). “Design of arithmetic unit for

high-speed performance using Vedic

mathematics”. International Journal of

Engineering Research and Applications,

pp. 26-31.

[3]. Poornima M, Shivaraj Kumar Patil,

Shivukumar, Shridhar K P and Sanjay H,

(2013). “Implementation of multiplier

using Vedic algorithm”.International

Journal of Innovative Technology and

Exploring Engineering, Vol. 2, No. 6.

[4]. M. Sowmiya, R. Nirmal Kumar,

S.Valarmathy and S. Karthick, (2013).

“Design of Efficient Vedic Multiplier by

the analysis of Adders”. International

Journal of Emerging Technology and

Advanced Engineering, Vol. 3, No.1.

[5]. PushpalataVerma and K. K. Mehta,

(2012). “Implementation of an Efficient

Multiplier based on Vedic Mathematics

Using EDA Tool”. International Journal of

Engineering and Advance Technology,

Vol.1, No. 5.

 [6]. Abhishek Gupta,UtsavMalviya and

VinodKapse, (2012). “A novel approach to

design high-speed arithmetic logic unit

based on ancient Vedic multiplication

technique”. International Journal of

Modern Engineering Research, Vol. 2, No.

4.

[7]. SuchitaKamble and N. N. Mhala,

(2012). “VHDL implementation of 8-bit

ALU”.IOSR Journal of Electronics and

Communication Engineering, Vol. 1, No.

1.

[8]. PushpalataVerma, (2012). “Design of

4x4 bit Vedic Multiplier using EDA Tool”.

International Journal of Computer

Applications, Vol. 48, No. 20.

[9]. AniruddhaKanhe, Shishir Kumar Das

and Ankit Kumar Singh, (2012). “Design

and Implementation of Low Power

Multiplier Using Vedic Multiplication

Technique”.International Journal of

Computer Science and Communication

(IJCSC), Vol. 3, No. 1, pp. 131-132.

[10]. UmeshAkare, T.V. More and R.S.

Lonkar, (2012).“Performance Evaluation

and Synthesis of Vedic Multiplier ”.

National Conference on Innovative

Paradigms in Engineering & Technology

(NCIPET-2012), Proceedings published by

International Journal of Computer

Applications (IJCA), pp. 20-23.

[11]. Anvesh Kumar and Ashish Raman,

(2010). “Low Power ALU Design by

Ancient Mathematics”. IEEE, 978-1-

4244-5586-7/10

[12]. Parth Mehta and DhanashriGawali,

(2009). “Conventional versus Vedic

mathematics method for hardware

implementation of a

multiplier”.International Conference on

Advances in Computing, Control, and

Telecommunication Technologies, pp.

640-642.

 [13]. Ramalatha, M.Dayalan, K D

Dharani, P Priya and S Deoborah, (2009).

“High speed energy efficient ALU Design

using Vedic Multiplication Techniques”.

IEEE Int. Conf. on Advances in

Computational Tools for Engineering

Applications (ACTEA-2009), pp. 600-603.

[14]. Honey DurgaTiwari,

GanzorigGankhuyag, Chan Mo Kim and

Yong BeomCho, (2008). “Multiplier

design based on Ancient Vedic

Mathematics”.IEEE, 978-1-4244- 2599-

0/08/$25.00 © 2008.

[15]. Jagadguru Swami Sri Bharati

Krishna TirthjiMaharaja, (1986). Vedic

Mathematics.MotilalBanarsidas, Varanasi,

India.

