

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 50

EVALUATING SECURITY PROPERTIES OF CLOUD SERVICE REST APIS FOR

ENHANCED PROTECTION

1L. Priyanka, 2V. Yogesh
1Assistant Professor, Department of MCA Student, Sree Chaitanya College of Engineering,

Karimnagar

2MCA Student, Department of MCA Student, Sree Chaitanya College of Engineering,

Karimnagar

ABSTRACT

REST APIs are used to programmatically

access the majority of contemporary cloud

and online applications. This article explains

how a service might be compromised by an

attacker taking advantage of flaws in its

REST API. In order to capture the desirable

characteristics of REST APIs and services,

we present four security criteria. We next

demonstrate how active property checks

may be added to a stateful REST API fuzzer

to automatically test and identify rule

violations. We go over how to efficiently

and modularly construct such checks. We

addressed the security implications of the

new issues we discovered using these checks

in a number of production Azure and Office

365 cloud services that had been deployed.

These bugs have all been resolved.

I. INTRODUCTION

Cloud computing is exploding. Over

the last few years, thousands of new cloud

services have been deployed by cloud

platform providers, like Amazon Web

Services and Microsoft Azure , and by their

customers who are “digitally transforming”

their businesses by modernizing their

processes while collecting and analyzing all

kinds of new data. Today, most cloud

services are programmatically accessed

through REST APIs . REST APIs are

implemented on top of the ubiquitous

HTTP/S protocol, and offer a uniform way

to create (PUT/POST), monitor (GET),

manage (PUT/POST/PATCH) and delete

(DELETE) cloud resources. Cloud service

developers can document their REST APIs

and generate sample client code by

describing their APIs using an interface-

description language such as Swagger

(recently renamed OpenAPI) . A Swagger

specification describes how to access a

cloud service through its REST API,

including what requests the service can

handle, what responses may be received, and

the response format. How secure are all

those APIs? Today, this question is still

largely open. Tools for automatically testing

cloud services via their REST APIs and

checking whether these services are reliable

and secure are still in their infancy. Some

tools available for testing REST APIs

capture live API traffic, and then parse, fuzz,

and replay the traffic with the hope of

finding bugs . Recently, stateful REST API

fuzzing was proposed to specifically test

more deeply services deployed behind

REST APIs. Given a Swagger specification

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 51

of a REST API, this approach automatically

generates sequences of requests, instead of

single requests.

II. LITERATURE SURVEY

1) Model driven security for web services

AUTHORS: MM Alam et al.

Model driven architecture is an approach to

increase the quality of complex software

systems based on creating high level system

models that represent systems at different

abstract levels and automatically generating

system architectures from the models. We

show how this paradigm can be applied to

what we call model driven security for Web

services. In our approach, a designer builds

an interface model for the Web services

along with security requirements using the

object constraint language (OCL) and role

based access control (RBAC) and then

generates from these specifications a

complete configured security infrastructure

in the form of Extended Access Control

Markup Language (XACML) policy files.

Our approach can be used to improve

productivity during the development of

secure Web services and quality of resulting

systems.

2) Run-time generation, transformation,

and verification of access control models
for self-protection

AUTHORS: Chen, Bihuan; Peng, Xin; Yu,

Yijun; Nuseibeh, Bashar and Zhao, Wenyun

(2014).

A self-adaptive system uses runtime models

to adapt its ar-chitecture to the changing

requirements and contexts. How-ever, there

is no one-to-one mapping between the

require-ments in the problem space and the

architectural elements in the solution space.

Instead, one refined requirement may
crosscut multiple architectural elements, and

its realization in volves complex behavioral

or structural interactions manifested as

architectural design decisions. In this paper

we pro-pose to combine two kinds of self-

adaptations: requirements-driven self-

adaptation, which captures requirements as

goal models to reason about the best plan

within the problem space, and architecture-

based self-adaptation, which cap-tures

architectural design decisions as decision

trees to search for the best design for the

desired requirements within the

contextualized solution space. Following

these adaptations, component-based

architecture models are reconfigured using
incremental and generative model

transformations. Com-pared with

requirements-driven or architecture-based

approaches, the case study using an online

shopping bench-mark shows promise that

our approach can further improve the

effectiveness of adaptation (e.g. system
throughput in this case study) and offer more
adaptation flexibility

3. Towards development of secure

systems using umlsec.

AUTHORS: Jan J¨urjens

We show how UML (the industry standard

in object-oriented modelling) can be used to

express security requirements during system

development. Using the extension

mechanisms provided by UML, we

incorporate standard concepts from formal

methods regarding multi-level secure

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 52

systems and security protocols. These

definitions evaluate diagrams of various

kinds and indicate possible

vulnerabilities.On the theoretical side, this

work exemplifies use of the extension

mechanisms of UML and of a (simplified)

formal semantics for it. A more practical

aim is to enable developers (that may not be

security specialists) to make use of

established knowledge on security

engineering through the means of a widely

used notation.

III. SYSTEM ANALYSIS

EXISTING SYSTEM:

 Scanning of Swagger-based

Representational State Transfer (REST)

APIs - In addition to scanning Simple

Object Access Protocol (SOAP) web

services, Qualys WAS leverages the

Swagger specification for testing REST

APIs. Users need to only ensure the

Swagger version 2.0 file (JSON format) is

visible to the scanning service, and the APIs

will automatically be tested for common

application security flaws. - Enhanced API

Scanning with Postman Support - Postman

is a widely-used tool for functional testing

of REST APIs. A Postman Collection is a

file that can be exported from the tool that

clubs together related requests (API

endpoints) and shares them with other users.

These collections are exported in JSON

format. With the release of Postman

Collection support in Qualys WAS,

customers have the option to configure their

API scans using the Postman Collection for

their API.

DISADVANTAGES OF EXISTING

SYSTEM:

⮚ SOAP APIs are largely based

and use only HTTP and XML.

⮚ On other hand Soap API

requires more resources and

bandwidth as it needs to convert the

data in XML which increases its

payload and results in the large sized

file.

⮚ On other hand SOAP cannot

make use of REST since SOAP is a

protocol and REST is an

architectural pattern.

PROPOSED SYSTEM:

REST APIs are implemented on top of the

ubiquitous HTTP/S protocol, and offer a

uniform way to create (PUT/POST), monitor

(GET), manage (PUT/POST/PATCH) and

delete (DELETE) cloud resources. Cloud

service developers can document their

REST APIs and generate sample client code

by describing their APIs using an interface-

description language such as Swagger

(recently renamed OpenAPI) [25]. A

Swagger specification describes how to

access a cloud service through its REST

API, including what requests the service can

handle, what responses may be received, and

the response format

ADVANTAGES OF PROPOSED

SYSTEM:

⮚ REST APIs are usually simple to

build and adapt.

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 53

⮚ With the initial URI, the client does

not require routing information.

⮚ Tools for automatically testing

cloud services via their REST APIs

and checking whether these services

are reliable and secure are still in

their infancy. Some tools available

for testing REST APIs capture live

API traffic, and then parse, fuzz, and

replay the traffic with the hope of

finding bugs.

⮚ Clients can have a generic ‘listener’
interface for notifications.

-->The approach is implemented as a

semi-automatic code generation tool

in Django, a Python web framework.

SYSTEM DESIGN

IV. IMPLEMENTATION

MODULES:

● user

● cloud

● admin

● REST API.

User

It defines the access rights of the cloud

users. A volume can be created, if the it has

not exceeded its quota of the permitted

volumes and a user Authorization is an

important security concern in cloud

computing environments. a POST request

from the authorized user on the volumes

resource would create a new volume. a

DELETE request on the volume resource by

an authorized user would delete the volume .

if the user of the service is authorized to do

so, and the volume is not attached to any

instance .It aims at regulating an access of

the users to system resources.

Cloud

.The cloud monitors contain contracts used

to automatically verify the implementation .

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 51

A cloud developer uses IaaS to develop a

private cloud for her/his organization that

would be used by different cloud users

within the organization. In some cases, this

private cloud may be implemented by a

group of developers working collaboratively

on different machines. We use Django web

framework to implement cloud monitor and

OpenStack to validate our implementation.

Admin

the cloud administrator using Keystone and

users or user groups are assigned the roles in

these projects. It defines the access rights of
the cloud users in the project. A volume can

be created, if the project has not exceeded its

quota of the permitted volumes and a user is

authorized to create a volume in the project.

Similarly, a volume can be deleted, if the

user of the service is authorized to do so,

and the volume is not attached to any

instance, i.e., its status is not in-use.

REST API:

REST is an acronym for REpresentational

State Transfer. It is an architectural style for

distributed hypermedia systems.By

separating the user interface concerns from

the data storage concerns, we improve the

portability of the user interface across

multiple platforms and improve scalability

by simplifying the server components. Each

request from client to server must contain all

of the information necessary to understand

the request, and cannot take advantage of

any stored context on the server. Session

state is therefore kept entirely on the client.

Cache constraints require that the data

within a response to a request be implicitly

or explicitly labeled as cacheable or non-

cacheable. If a response is cacheable, then a

client cache is given the right to reuse that

response data for later, equivalent requests.

By applying the software engineering

principle of generality to the component

interface, the overall system architecture is

simplified and the visibility of interactions is

improved. In order to obtain a uniform

interface, multiple architectural constraints

are needed to guide the behavior of

components. REST is defined by four

interface constraints: identification of

resources; manipulation of resource through

representations; self-descriptive messages;

and, hypermedia as the engine of application

state.The layered system style allows an

architecture to be composed of hierarchical

layers by constraining component behavior

such that each component cannot “see”

beyond the immediate layer with which they

are interacting. REST allows client

functionality to be extended by downloading

and executing code in the form of applets or

scripts. This simplifies clients by reducing

the number of features required to be pre-

implemented.

V. RESULTS

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 52

User details:

View-files:

V. CONCLUSION

In order to capture the desired characteristics

of REST APIs and services, we created four

security principles. We then demonstrated

how active property checkers, which

automatically test and identify breaches of

these rules, may be added to a stateful REST

API fuzzer. Using the fuzzer and checkers

outlined in this work, we have so far fuzzed

about a dozen production Azure and Office-

365 cloud services. Our fuzzing was able to

identify a few additional issues in each of

these services in nearly every instance.

Approximately one-third of those problems

are rule violations that our new security

checkers have discovered, and the other

two-thirds are "500 Internal Server Errors."

All of these issues have been resolved when

we informed the service owners about them.

In fact, it is evident that possible security

vulnerabilities exist when the four security

standards presented in this study are broken.

Our current bug "fixed/found" ratio is over

100%, indicating that the service owners

have treated the issues we discovered

seriously. Furthermore, fixing these issues is

safer than running the risk of an unknowable

live event that may be purposefully started

by an attacker or accidentally triggered.

Lastly, the ease of reproducibility of these

Volume 14, Issue 11, Nov 2024 ISSN 2457-0362 Page 53

problems and the fact that our fuzzing

technique does not generate false alerts are

helpful. How broadly applicable are these

findings? We must examine more attributes

and fuzz more services via their REST APIs

in order to identify various bugs and security

flaws. Surprisingly little advice exists about

the use of REST APIs from a security

perspective, despite the recent boom of

REST APIs for cloud and web services. By

proposing four criteria whose infractions are

security-relevant and difficult to verify and

comply with, our study takes a step in that

direction.

REFERENCES

[1] S. Allamaraju. RESTful Web Services

Cookbook. O’Reilly, 2010.

 [2] Amazon. AWS.

https://aws.amazon.com/.

 [3] APIFuzzer.

https://github.com/KissPeter/APIFuzzer.

 [4] AppSpider.

https://www.rapid7.com/products/appspider.

[5] V. Atlidakis, P. Godefroid, and M.

Polishchuk. RESTler: Stateful REST API

Fuzzing. In 41st ACM/IEEE International

Conference on Software Engineering

(ICSE’2019), May 2019.

 [6] BooFuzz.

https://github.com/jtpereyda/boofuzz.

[7] Burp Suite. https://portswigger.net/burp.

 [8] D. Drusinsky. The Temporal Rover and

the ATG Rover. In Proceedings of the 2000

SPIN Workshop, volume 1885 of Lecture

Notes in Computer Science, pages 323–330.

Springer-Verlag, 2000.

[9] R. T. Fielding. Architectural Styles and

the Design of Network-based Software

Architectures. PhD Thesis, UC Irvine, 2000.

 [10] P. Godefroid, M. Levin, and D.

Molnar. Active Property Checking. In

Proceedings of EMSOFT’2008 (8th Annual

ACM & IEEE Conference on Embedded

Software), pages 207–216, Atlanta, October

2008. ACM Press.

 [11] K. Havelund and G. Rosu. Monitoring

Java Programs with Java PathExplorer. In

Proceedings of RV’2001 (First Workshop

on Runtime Verification), volume 55 of

Electronic Notes in Theoretical Computer

Science, Paris, July 2001.

[12] R. Lammel and W. Schulte.

Controllable Combinatorial Coverage in ¨

Grammar-Based Testing. In Proceedings of

TestCom’2006, 2006.

 [13] Microsoft. Azure.

https://azure.microsoft.com/en-us/.

 [14] Microsoft. Azure DNS Zone REST

API.

https://docs.microsoft.com/enus/rest/api/dns/

zones/get.

 [15] Microsoft. Microsoft Azure Swagger

Specifications. https://github.com/

Azure/azure-rest-api-specs.

https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://portswigger.net/burp
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/enus/rest/api/dns/zones/get
https://docs.microsoft.com/enus/rest/api/dns/zones/get

	3. Towards development of secure systems using umlsec.

