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ABSTRACT 

In this project work, we develop a new image super-resolution (SR) approach based on a 

Convolution Neural Network (CNN), which jointly learns the feature extraction, upsampling, and 

high-resolution (HR) reconstruction modules, yielding a completely end-to-end trainable deep 

CNN. However, directly training such a deep network in an end-to-end fashion is challenging, 

which takes a longer time to converge and may lead to sub-optimal results. To address this issue, 

we propose to jointly train an ensemble of deep and shallow networks. The shallow network with 

weaker learning capability restores the main structure of the image content, while the deep 

network with stronger representation power captures the high-frequency details. Since the shallow 

network is much easier to optimize, it significantly lowers the difficulty of deep network 

optimization during joint training. To further ensure more accurate restoration of HR images, the 

high frequency details are reconstructed in a multi-scale manner to simultaneously incorporate 

both short- and long-range contextual information. The proposed method is extensively evaluated 

on widely adopted data sets and compares favorably against state-of-the-art methods. In-depth 

ablation studies are conducted to verify the contributions of different network designs to image 

SR, providing additional insights for future research. 

1. INTRODUCTION 

Single image super-resolution (SR) aims at 

restoring the high resolution (HR) image with 

abundant high-frequency details from the low 

resolution (LR) observation. Given that 

multiple HR images can be down-sampled 

into the same LR image, SR as the reverse 

problem is inherently ill-posed with 

insufficient knowledge. Recently, learning-

based methods have attracted increasingly 

more attention and delivered superior 

performance in image SR. The basic idea is to 

learn the mapping function from the LR 

image to the HR counterpart using auxiliary 

data. A variety of machine learning 

algorithms, on popular idea for image SR 

with CNNs focuses on learning the residual 

between the HR image and the bicubic-

interpolated LR image, assuming that the 

target HR image shares the similar main 

structure to the bicubic up sampled LR 

version. However, the hand-crafted bi cubic 

interpolation is not specifically designed for 

this purpose and may hinder the final 

performance. As opposed to the above CNN 

with bicubic interpolation based approaches, 

our method learns a direct mapping from LR 

to HR images with CNNs. However, our 

preliminary experiments suggest that training 

a sophisticated deep network in such an end-

to-end fashion is challenging, leading to sub-

optimal results. To address this issue, we 

propose to jointly train an ensemble of deep 

and shallow networks. Specifically, the 
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shallow network is lightweight (e.g., only 3 

convolution layers) and easier to optimize, 

while the deep network is elaborately 

designed and consists of three major 

procedures.  

Firstly, feature extraction is performed to map 

the original LR image into a deep feature 

space. The deep features are then upsampled 

to the target spatial size with learned filters. 

Finally, the HR image is reconstructed by 

considering multi-scale context of the up 

sampled deep features. During joint training, 

the shallow network converges quickly and 

captures the major structure of the HR image, 

i.e., mostly low-frequency content. As a 

consequence, the deep network is only 

responsible to restore the high-frequency 

details based on the main image structure, 

which effectively lowers the difficulty of deep 

network training. The proposed network 

ensemble is similar to the above CNN with 

bicubic interpolation based approaches in that 

the deep network is designed to learn the high 

frequency residual content. However, 

different from these approaches, our method 

replaces the bicubic interpolation with a 

shallow network, allowing fully end-to-end 

trainable. It has also been that reconstructing 

a pixel may depend on either short- or long-

range contextual information. Some CNN-

based approaches rely on small image patches 

to predict thecentral pixel value, which is less 

effective for SR with large up scaling factors.  

 

2. LITERATURE SURVEY 

We describe a learning-based method for low-

level vision problems—estimating scenes 

from images. We generate a synthetic world 

of scenes and their corresponding rendered 

images, modeling their relationships with a 

Markov network. Bayesian belief propagation 

allows us to efficiently find a local maximum 

of the posterior probability for the scene, 

given an image. We call this approach 

VISTA—Vision by Image/Scene Training. 

We apply VISTA to the “super-resolution” 

problem (estimating high frequency details 

from a low-resolution image), showing good 

results. To illustrate the potential breadth of 

the technique, we also apply it in two other 

problem domains, both simplified. We learn 

to distinguish shading from reflectance 

variations in a single image under particular 

lighting conditions. For the motion estimation 

problem in a “blobs world”, we show 

figure/ground discrimination, solution of the 

aperture problem, and filling-in arising from 

application of the same probabilistic 

machinery. Methods for super-resolution can 

be broadly classified into two families of 

methods: (i) The classical multi-image super-

resolution (combining images obtained at sub 

pixel misalignments), and (ii) Example-Based 

super-resolution (learning correspondence 

between low and high resolution image 

patches from a database). In this paper we 

propose a unified framework for combining 

these two families of methods. We further 

show how this combined approach can be 

applied to obtain super resolution from as 

little as a single image (with no database or 

prior examples). Our approach is based on the 

observation that patches in a natural image 

tend to redundantly recur many times inside 

the image, both within the same scale, as well 

as across different scales. Recurrence of 

patches within the same image scale (at 

subpixel misalignments) gives rise to the 
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classical super-resolution, whereas recurrence 

of patches across different scales of the same 

image gives rise to example-based super-

resolution. Our approach attempts to recover 

at each pixel its best possible resolution 

increase based on its patch redundancy within 

and across scales.. 

 

3.SYSTEM ANALYSIS 

Image SR can be generally classified into 

three categories, i.e., interpolation-based 

reconstruction based and learning-based 

methods Among them, learning-based 

methods become a hot research point in the 

field of image SR in recent years, whose basic 

idea is to formulate image SR as a nonlinear 

mapping from LR to HR images and learn the 

mapping using auxiliary data in a supervised 

manner. The opening work is proposed by 

Freemanetal. , which employs Markov 

Random Field (MRF) and patchbased 

external examples to produce effective 

magnification. Inspired by various methods 

have been developed subsequently. One of 

the representative methods is based on the 

sparse representation algorithm, which 

ensures that HR patches have a sparse linear 

representation over an overcomplete 

dictionary of patches randomly sampled form 

similar images. Yangetal. train LR and HR 

dictionaries jointly with the constraint that LR 

patches and the corresponding HR 

counterparts share the same sparse 

representation. This work is developed by 

which employs K-SVD to train the coarse 

dictionary and Orthogonal Matching Pursuit 

(OMP) to solve the decomposition problem. 

Based on the neighbor embedding algorithm, 

works of super-resolve LR images with the 

assumption that LR and HR patches lie on 

low-dimensional nonlinear manifolds with 

locally similar geometry. To further improve 

computational efficiency, some techniques 

are put forward. Yang and Yang cluster LR 

feature space into numerous subspaces and 

learn simple mapping functions for each 

subspace. This propose is to use a number of 

linear regressors to locally anchor the 

neighbors. With the precalculated anchors and 

regressors, ‘‘A+’’ [11] increases SR 

performance both in terms of accuracy and 

speed. Based on the regression trees or forests 

algorithm, another line of image SR technique 

is proposed, which builds on linear 

multivariate regression models using leaf 

nodes and locally linearizes the mapping from 

LR to HR patches around centroids. Deep 

learning based methods have recently been 

applied to image SR and delivered compelling 

performance a CNN comprising three 

convolution layers is proposed for image SR. 

Later on, reformulate traditional sparse 

coding based method as deep networks and 

achieve promising results. Reference restores 

the HR images using a Gibbs distribution as 

the conditional model, with its sufficient 

statistics predicted by a CNN. Inspired by the 

residual prediction based methods Kim et al. 

propose a deep network with 20 convolutional 

layers to learn the residual between HR and 

LR images, which boosts performance by a 

large margin. The authors also present a 

deeply-recursive convolutional network to 

restore the HR images . This propose to 

extract feature maps in the LR space and learn 

to increase the resolution only at the very end 

of the network, which shows that the learned 

upscaling filters can further increase the 
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accuracy of prediction. Subsequently, many 

other CNN-based techniques are applied in 

image SR, such as densely connected network 

recursive network and cascade upsampling 

network and so on. Compared with the above 

works, we propose a fully end-to-end 

trainable system which adopts an ensemble of 

deep and shallow networks. In addition, a 

multi-scale HR image restoration module is 

also designed to aggregate both short- and 

long-range contextual information. These 

techniques have not been simultaneously 

explored in existing methods. 

DISADVANTAGES 

Less accuracy score 

Low performance 

Unable to predict the resolution 

4. PROPOSED SYSTEMS 

In this section, we introduce the proposed 

EEDS (End-to-End Deep and Shallow 

networks) method for image SR. This 

overviews the architecture of the network 

ensemble comprising a deep and a shallow 

CNN. The deep CNN can be further divided 

into three modules: feature extraction, up 

sampling and multi-scale reconstruction. 

A. FEATURE EXTRACTION 

In order to extract local features of high-

frequency content, traditional shallow 

methods perform feature extraction by 

computing the first and second order 

gradients of the image patch, which is 

equivalent to filtering the input image with 

hand-designed, high-pass filters. Rather than 

manually designing these filters, deep 

learning based methods automatically learn 

these filters from training data. However, 

some works extract features from the coarse 

HR images, which is obtained by up sampling 

the LR images to the HR size with bicubic 

interpolation. We argue that the bicubic 

interpolation is not specifically designed for 

this purpose, and even damages important LR 

information that may play a central role in 

restoring the HR counterparts. Therefore, the 

proposed method adopts an alternative 

strategy and performs feature extraction 

directly on the original LR images with 

convolution layers. Our feature extraction 

module consists of three convolution layers 

interleaved by Rectified Linear Unites 

(ReLUs) acting as nonlinear mappings. A 

shortcut connection with identity mapping is 

used to add the input feature map of the 

second layer to the output of the third layer, 

which is formulated as a ‘‘residual unit’’. As 

justified by such residual unit can effectively 

facilitate gradients flow through multiple 

layers, thus accelerating deep network 

training. Similar structures have also been 

used in our reconstruction module. All three 

convolution layers have the same kernel size 

of 3×3 and generate feature maps of 64 

channels. Zero padding is adopted to preserve 

the spatial size of the output feature maps. 

B. UPSAMPLING 

Given the extracted features from the original 

LR images, upsampling operation is 

performed to increase their spatial span to the 

target HR size. Instead of using hand-

designed interpolation methods, we prefer a 

learning based upsampling operation, giving 

rise to an end-to-end trainable system. To this 

end, we consider two different strategies 

widely adopted in CNN for up sampling, i.e., 

un pooling and deconvolutions. As opposed 

to pooling layers, the un pooling operation 
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with an up scaling factor s replaces each entry 

in the input feature map with a s × s block, 

where the top left element in the block is set 

to the value of the input entry and the others 

to zero. The un pooling operation yields 

enlarged yet sparse output feature maps. The 

sparsely activated output values can then be 

propagated to local neighborhoods by 

subsequent convolution layers. The 

deconvolution layer up scales the input 

feature maps by s-fold through reversing the 

forward and backward propagation of 

convolution layers with an output stride of s. 

Although un pooling and deconvolution resort 

to different implementations, they are 

essentially similar in up scaling feature maps 

and both are well suited to our task. We adopt 

the deconvolution layer and achieve 

promising performance. 

C. MULTI-SCALE RECONSTRUCTION 

Since similar image patterns may recur across 

different scales in different images of both 

training and test sets, accurate inference of the 

input image should be highly invariant to 

image scale variations and may rely on the 

aggregation of multi-scale contextual 

information. This insight has been intensively 

studied and verified in vision related 

problems, like image object detection [39], 

scene recognition , etc. From the perspective 

of image SR, some prior methods have also 

confirmed that multi-scale context can 

effectively benefit HR image reconstruction. 

Considering that HR image restoration may 

rely on both short- and long-range contextual 

information, we propose to perform HR 

reconstruction with multi-scale convolutions 

to explicitly encode multi-context 

information. The input of our HR 

reconstruction module firstly go through R 

residual units. Then a dimension reduction 

layer is followed that consists of a 1 × 1 

convolution, mapping the input feature map 

of 64 channels to the output 16 channels. The 

subsequent multi-scale convolution layer 

comprises 4 convolution operations of 1 × 1, 

3 × 3, 5 × 5, and 7 × 7 kernel sizes, 

respectively. All four convolutions are 

simultaneously conducted on the input feature 

map and produce four feature maps of 16 

channels. 

ADVANTAGES  

Good accuracy score  

Good performance  

Predict the higher resolution 

SOFTWARE REQUIREMENTS  

Operating System : Windows 7/8/10 or Linux 

or MAC  

Language : Python 3.X  

HARDWARE REQUIREMENTS  

Processor : Pentium 3, Pentium 4 and higher  

RAM : 2GB and higher  

Hard disk : 80GB and higher 

IMPLEMENTATION 

5. ARCHITECTURE ANALYSIS: 

To gain further insights of our contributions, 

we conduct additional evaluations on 

different variants of the proposed EEDS 

method. Unless stated otherwise, we strictly 

follow the implementation settings in Section 

IV-A to train all the methods. Our method 

jointly trains a deep and a shallow network as 

an ensemble. To investigate the impact of the 

two networks on the final performance, we 

split the two networks and obtain two variants 

of the proposed EEDS model, namely, EED 
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(end-to-end deep network) and EES (end-to-

end shallow network), respectively. Fig. 3 

depicts the convergence plots of all three 

models on the Set5 data set. EES with a 

shallow network takes less time to converge. 

However, limited by its capacity, the final 

performance of EES is relatively low. In 

contrast, EED is more difficult to train. The 

training process is very unstable with 

oscillation in training loss. Upon 

convergence, EED achieves higher PSNR 

than EES, but is still unsatisfactory. This may 

be attributed to the fact that directly mapping 

LR images to HR ones is a very complex task 

and EED may converge to some local 

minimum. The proposed EEDS method 

mitigates this issue by combining deep and 

shallow networks as an ensemble. At joint 

training, the shallow network still converges 

much faster and dominates the performance at 

the very beginning. After the shallow network 

has already captured the major components of 

the HR images, the difficulty of direct SR has 

been significantly lowered. The deep network 

then starts to focus on the high-frequency 

details and learns to correct the errors made 

by the shallow network nd achieves the best 

performance among all three methods. Upon 

convergence, the prediction made by the 

shallow network of EEDS restores most 

content with blur and artifacts , whereas the 

deep network of EEDS learns to predict the 

residual between the HR image and the output 

of the shallow network, mostly containing 

high-frequency content The behavior of deep 

and shallow networks combined through 

simple addition is supported by and further 

confirms the key findings of deep residual 

networks ,indicating that deep residual 

learning can be achieved through addition of 

subnetworks and makes deep networks more 

easier to optimize. Meanwhile, the addition of 

deep and shallow networks is also consistent 

to prior SR methods where SR is conducted 

by learning the residual between HR image 

and the bicubic interpolated LR input. As 

opposed to these approaches, our EEDS 

method replaces the fixed bicubic 

interpolation with a shallow network and 

jointly trains the deep and shallow networks, 

making the residual prediction based method 

a special case of our method. To study the 

impact of combining deep and shallow CNNs 

on other network architectures, we compare 

an eight-layer baseline deep CNN (denoted as 

DCNN) that has similar architecture to 

SRCNN against the combination of the deep 

CNN and a 3-layer shallow CNN (denoted as 

DSCNN). DSCNN consistently outperforms 

DCNN across all the data sets, suggesting that 

the benefits of combining deep and shallow 

networks can generalize to other network 

architectures. 

PROBLEM STATEMENT  

The problem here is when we are transferring 

the images , they loose their resolution as a 

result  the clarity of the image decreases , so 

in order to increase the clarity of image we 

use CNN  technique and convert the low 

resolution image to High resolution image  

6. Results 

The following shows the series of output 

screens and how the actual process of 

implementing CNN takes place  

The first figure of the output screen shows the 

information ablout the images that are used 

for working 
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All the images are converted in this format 

and put in a folder called output 

CONCLUSION 

In this project a fully end-to-end trainable 

system for single image SR using an 

ensemble of deep and shallow networks. The 

shallow network with a lightweight 

architecture is easy to optimize and learns to 

render the major structure of the HR image, 

while the deep network with a stronger 

learning capability is only responsible to 

capture the high frequency details. As such, 

jointly training the network ensemble can 

significantly lower the difficulty of network 

training and gives rise to more superior 

performance. To ensure more accurate 

restoration of HR images, 

the HR reconstruction is performed in a 

multi-scale manner to simultaneously 

incorporate both short- and long-range 

contextual information. Experiments confirm 

that the proposed method performs favorably 

against state-of-the-art approaches. In-depth 

ablation studies are also conducted to verify 

the contributions of different network designs 

to image SR, providing additional insights for 

future research 
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