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ABSTRACT 

X-ray point sources in elliptical galaxies have attracted significant attention in recent years 

due to their dynamic nature and potential to unveil crucial insights into the astrophysical 

processes occurring within these enigmatic galactic structures. This abstract summarizes the 

current state of variability studies focused on X-ray point sources within elliptical galaxies, 

shedding light on the diverse phenomena and mechanisms that contribute to the temporal 

variations observed in these sources. The investigation of X-ray point source variability in 

elliptical galaxies has been driven by the continuous advancements in X-ray observatories, 

offering unprecedented sensitivity and temporal resolution. We discuss various 

methodologies and statistical approaches employed to analyze the light curves of these point 

sources, including time-series analysis techniques such as power spectral density estimation, 

autocorrelation, and Bayesian modeling.  
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INTRODUCTION 

Su- pernova Type Ia (Wang et al., 2007), abbreviated SN Ia, is a thermonuclear explosion 

that occurs when a carbon-oxygen white dwarf approaches the Chandrasekhar limit as a 

result of mass transfer from a donor or a merger. Being the brightest class of SN, and lacking 

hydrogen and helium in their early spectra, these events are distinct from the other main class 

of supernovae, the core-collapse type (CC).1  

In addition, around optical maximum, they show lines of intermediate-mass elements 

including calcium, silicon, oxygen, and magnesium, and beginning about three weeks 

following optical maximum, they show lines of iron-peak elements, principally Fe II 

(Wheeler & Benetti, 2002). 

Since these objects have been used as standard candles (e.g. Schmidt et al., 1998), they have 

been the subject of intensive research in order to better understand how the CDM paradigm 

calculates fundamental cosmological parameters like the density of matter and the 

cosmological constant.  

There are two prominent hypotheses for the origin of SN Ia: the single degenerate (SD) 

channel, in which the progenitor is an interacting binary -star- system, and the multiple 

progenitor channel. The main, with its greater mass, develops to a white dwarf more quickly, 

whereas the secondary, with its greater ability to transfer mass, does so later in its stellar 

history.  

The secondary star is either on the main sequence, a subgiant, or a red giant, and this is the 

most common scenario. The amount of mass transferred would be sufficient to surpass the 

Chandrasekhar mass (Mch) limit of 1.4MS, where S denotes the solar value. When two white 

dwarfs lose angular momentum and energy owing to the emission of gravitational radiation, 
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they merge into a single object called a double degenerate (DD) channel (Gilfanov & 

Bogd'an, 2010). This happens during the likely ejection of a common envelope (hereinafter 

CE). 

 
Figure 1 Spectra of SNe; we clearly see that in SN Ia dominate the intermediate-mass 

elements, while hydrogen and helium are lacking. From Filippenko (1997). 

FORMALISM 

The vector space -by Dirac- ket space has all the qualities of a Hilbert space, therefore let |A 

be a vector describing a specific state of a microscopic system1. The superposition principle 

holds, meaning that each state |A| is the superposition of two or more other states, and may be 

expressed in terms of the normalized basis |i|..|N| of the ket 

space 

 

 

where i is a complex number and i can be anything.  

It is possible to see the bra associated with each ket as a special example of a linear functional 

F on |A|. 

 
The Kronecker delta may be written as where ij = 1 if i = j and 0 otherwise.  The last equation 

defines inner product, yielding a complex number in concept. The inner product is always 

real and equal to the norm of |A|, therefore it follows that if F A, then F A. The fact that the 

outer product of B| and |A, |AB|, corresponds to a linear operator is noteworthy. 

We now introduce the idea of a linear operator X which, when applied to the kets |A, |B, 

yields still another ket set.  In addition to not commuting with another operator Y (XY /= 
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YX), one of the features of X is that it is associative on thekets4.  The null operator X|A = |0| 

and the identity X|A = |A| are two such examples. The presence of an operator X owing to 

DC, where X|A A|X, should also be obvious 

⟨B|Xˆ†|A⟩ = ⟨A|Xˆ|B⟩∗ 

potential for simple confirmation. The term "adjoint operator of X" is often used to refer to X.   

An operator is said to be Hermitian if and only if it is equivalent to its adjoint.  Therefore, if 

operates on eigenkets |′, it follows that 

 
with η′ being what's termed an eigenvalue, a real number. Hermitian operators have 

eigenvalues that are always real5 and eigenstates that are orthogonal (orthonormal after 

normalization). 

Any Hermitian operator may be interpreted as a measurable observable of the system in a 

state |′. How likely is it, then, that the system will go from its initial state |A to a later state |′? 

Since |A is a linear combination of the components of the basis, satisfying |η | = 1 (sum over 

all states ′), and P (η′) is a positive integer, this probability is directly connected to |A|′η |2. To 

be sure 

 
Now that we know how often it is for a system to "jump" from one state to another, we can 

rapidly move on to demonstrating some of the more interesting (and readily verifiable) 

aspects of the quantum mechanics universe. 

1. Given an ensemble of systems in an initial (normalized) state |A, the expected value 

of any observable is = A||A. 

2. Definitions such as dη′ |η′ ⟩⟨η′ | = 1, ⟨η′ |η′′ ⟩ = δ(η′ − η′′ ) (where Dirac delta) are 

generalized to a continuous spectrum in the second definition. 

3. The notation for the commutation of two operators is [X, Y] = XY YX.  If two 

operators commute, then both of them may be measured at the same time. 

4. Analogous to Hamiltonian mechanics, if a system can be describe by the (gener- 

alized) coordinates x1..xi, xj (position) and p1..pi, pj (momentum), the relations of 

commutation of their corresponding operators xˆ1, .., xˆi, xˆj and pˆ1, .., pˆi, pˆj are 

written as [xˆi, xˆj] = 0, [pˆi, pˆj] = 0 and [xˆi, pˆj] = ikδij (unlike the classical result ≡ 

0), with i = √−1 and the reduced Planck constant k. 

5. The amount (x0 |A is a function of the position x′ and is known as the (position-space) 

wave function A(x′) in the continuous formalism, given a position operator x with 

eigenvalues x′ and eigen- kets |x′. The p operator is no different in this regard.  This 

establishes the Fourier transforms of the wave functions in position space and 

momentum space. 

6. In the continuous-functional paradigm, it is easy to prove that the x's and p's of an 

operator may be expressed as the derivative of one another, x' = ik d and p'x = ik d.  
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Position-space representation (i.e. projection into x space), also known as the Schro 

dinger representation, will be used throughout this thesis. 

7. It is possible to derive Heisenberg's uncertainty principle as follows: xpx k. 

Schrodinger Equation 

System has been expressed in terms of position and momentum at a fixed instant (time) 

t0, which is the moment of the measurement that defines the probability at any time t > t0 

if the system stays unperturbed in the interval t = t t0.  However, the state itself may 

evolve with time even if the likelihood to "jump" to it remains constant. To illustrate this, 

think of a system in an initial state at time zero (t0) that develops over a period of time t 

(|At0 and |At). The (time evolution) operator T describes how this state will change over 

time. 

 
That satisfies 

 
Where H(t) is the system's Hamiltonian operator, and the system's total energy is 

measured in terms of its eigenvalues. The solution to the differential equation 2.5 looks 

like this: 

 
In its most basic form, the famous Schrodinger equation may be written as Equation 2.5. 

Consider a mass-m, one-dimensional particle whose location x (x operator) and 

momentum px (px operator) are expressed in terms of its potential V (x, t).   H = px2 + V 

(x, t) is the formula for the Hamiltonian operator, thus 

 
The final equation follows from the definition of operator T (Equation). 

 
Schrodinger's representation in position space. 

 
and by definition of ΨA(x) ≡ Ψ(x, t) 
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Assuming a three-dimensional space, it is possible to prove, using H(t), that the 

corresponding equation is 

 

with e.g. x = (x, y, z) and ∇ =  The overarching equation in quantum 

physics is known as the time-dependent Schrodinger equation. 

Orbital Angular Momentum 

Orbital angular momentum operator L = (Lx, Ly, Lz) in quantum mechanics may be 

represented in the same way as in classical mechanics by using the equation S.4 for 

position x = (x, y, z) and momentum p = (px, py, pz) operators and L = x p. 

 
It is evident that Lx, Ly, and Lz do not commute, hence it is impossible to measure them 

all simultaneously.  With Lz as the observable and the operator L2 defined as L2 + L2 + 

L2, it is straightforward to demonstrate that 

 
Therefore, L2 is a commutator for Lz.  For the L2 and Lz operations, what are the 

associated eigenvalues for the |l, m eigenkets?  If the magnetic quantum number ml is an 

eigenvalue of the orbital angular momentum L = Lx iLy, as is often the case, then 

Lˆz |l, ml⟩ = mlk|l, ml⟩ 

It is required that the azimuthal quantum number, l, satisfy the following for every ml 

integer: 

Lˆ2|l, ml⟩ = k2l(l + 1)|l, ml⟩ 

Constructing the matching L2 eigenvalues 

The eigenkets...what are they? The operators of Hamiltonian H V (x, t) end up creating a 

sphere in (x, y, z) (r sin θ cos φ, r sin θ sin φ, r cos θ), in the Schrodinger model, which is 

particularly helpful for demonstrating them. 
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and thereby modifying the Schrodinger equation's original form. The spherical 

harmonics, a specific collection of functions, are more conveniently written as the Eigen 

functions ψ(θ, φ) of L2 in this notation. 

 
and the corresponding Legendre function is Plm. Among the many fascinating features of 

these lms is the need that the quantum numbers in Equations l = ml = l and l, ml be 

integers. 

Example: Hydrogen Atom 

Solving the wave functions of a hydrogen atom, which only includes one proton 

(represented by the subscript p) and one electron (represented by the subscript e), is a 

classic application of the Schrodinger equation. Since solving these difficult equations is 

beyond the scope of this thesis, we merely provide the crucial details here. 

For illustration, let us use as the Eigen function that solves the time-independent 

Schrodinger equation for a proton with a simple Coulomb potential, V (r) − 4πє0r , with 

ϵ0  where 0 is the permittivity of vacuum. 

Strictly speaking, the mass of the system is, the decreased mass, but for the sake of 

brevity, we'll just call it "the mass," or "m." We suppose that Φ(r, θ, φ) may be broken 

down into radial functions, (r), and angular functions, Φ(r, θ, φ)  in order to solve H = E. 

The (global) Schrodinger equation may be modified by substituting the following 

expressions: 
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We get the well-studied mathematical solutions to the Sturm-Liouville problem for (r). In 

the presence of well-defined boundaries, the energy E can only take on finite quantities: E 

= −13.6eV, for n > 1 and l = 0 . . . n − 1. 

Spin Angular Momentum 

The fundamental ideas of quantum mechanics culminate in the introduction of spin, a 

kind of angular momentum that is unique to quantum mechanics. Hermitian operators S = 

(Sx, Sy, Sz) are defined in a way that complies with the commutation rules of operator L.  

The appropriate eigenvalues are defined by Sz and S2 as operators in the new basis |s.ms, 

as 

 
Where ms = {−s, −s + 1, . . . , s − 1, s}. Electrons and protons are examples of fermions 

because their spin numbers are only half an integer (s = 1), whereas photons are an 

example of a boson since their spin number is an integer (s = 1). 

CONCLUSION 

Although our values are within 2 of those found in the literature, we are unable to draw 

firm conclusions about the flux or brightness of the unidentified nebulae due to the 

ambiguity in flux calibration. The uncertainty seems to be inherent to the procedure, 

rather than being attributable to our specific collection of observations, the fact that we 

subtracted V pass band pictures instead of B + V, or the absence of absolute calibration in 

photometry due to the lack of photometric nights. Although the discrepancy between our 

measurements and amounts to just 0.4 ADU per pixel, it is virtually impossible to ensure 

that background determination employed in picture subtraction is done to within a 

fraction of an ADU throughout the whole field of view. Despite our best efforts, we were 

unable to make sense of the data presented by HOTPANTS when subtracting photographs 

captured with various filters, including the subtraction between V-V and O-O filters of 

successive images. 
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